

MT300 Serisi MODULAR UPS Ve Paralel Sistem 30kVA~150kVA Kullanım Kılavuzu

Güvenlik Önlemleri

Bu kılavuz UPS'in kurulumu ve kullanımını kapsamaktadır.

Lütfen kurulumdan önce bu kılavuzu okuyum.

UPS üreticisi veya temsilcisi tarafından belirlenen mühendislerce kurulumu ve bakımı yapılmalıdır.

Aksi halde, kişilerin güvenliği tehlikeye girer veya cihazın arızasına neden olabilir. Bu kurallara uyulmamasından kaynaklanan herhangi bir UPS arızası garanti kapsamına girmez.

UPS sadece ticari ve endüstriyel amaçlar için kullanılır ve yaşam destek ekipmanları için güç kaynağı olarak kullanılamaz.

Bu ürün A Sınıfı UPS cihazına aittir. Yerleşik güç kaynağı için kullanıldığında parazite neden olabilir. Böyle bir durumda ek önemler alınmalıdır.

Bu cihaz CE 2006/95/EC (düşük voltaj güvenliği), 2004/108/EC (EMC), Avustralya ve Yeni Zelanda EMC standartları (C-Tick) ve aşağıdaki UPS standartları ile uyumludur:

*IEC62040-1-1 çalışma bölgesi genel güvenlik gereksinimleri

*IEC62040-2 EMC, C2 Sınıfı UPS

*IEC62040-3 performans gereksinimleri ve test yöntemleri

Ayrıntılar için, Bölüm 9 Ürün Özelliklerine bakın.

Cihaz kurulumu yukarıdaki gereksimlere göre yapılmalı ve üretici tarafından belirlenen donanımlar kullanılmalıdır.

Uyarı: Büyük sızıntı akımı

Giriş gücünü bağlamadan önce (AC ana şebeke ve aküler dahil), cihazı güvenilir bir şekilde topraklayınız. Toprak sızıntı akımı 3,5mA ~ 1,000mA.

Anlık RCCB veya RCD cihazını seçerken cihazın başlangıçtaki geçici durum ve kararlı durum toprak sızıntı akımını düşünün. Tek yönlü DC darbesi (A sınıfı) ve geçici durum akım darbesi duyarsız olan RCCB seçilmelidir.

Toprak sızıntı akımına direncin RCCB veya RCD'ye geçebileceğine dikkat ediniz.

Cihaz topraklaması yerel elektrik yönetmeliklerine uygun olmalıdır.

Uyarı: Geri Besleme koruması

UPS statik baypas devresi üzerinden giriş tarafına gerilimin geri beslemesini önlemek için dış otomatik devre kesici ile birlikte kullanmak için (ayrı desteklenmektedir) sıfır gerilim temas yakın sinyal sağlamaktadır. Eğer kurulumcu bu sinyali kullanmaya gerek duymazsa, devrenin UPS sistemine bağlandığını bakım personeline bildirmek için harici baypas giriş anahtarı cihazı takılmalıdır.

Kolayca takmak için, devreyi çalıştırmadan önce UPS'i izole ediniz.

Kullanıcı tarafından müdahale edilebilir cihaz

Cihaz için bütün iç bakım araç gereçlerle ve ilgili eğitimli personel tarafından gerçekleştirilmelidir.

Sadece araç gereçle açılabilen koruma kapağı arkasındaki parçalar kullanıcı tarafından çalıştırılamaz.

UPS işletim alanındaki ekipman güvenlik gereksinimleriyle tamamen uyumludur. UPS ve akü odası tehlikeli voltaj içermektedir, bakım personelinden başka kişiler erişemez. Çünkü sadece araç gereçle koruma kapağı açıldığında tehlikeli voltaj ile içeriğe ulaşılabilir, muhtemel elektrik şoku en aza indirilir. Bu kılavuzdaki genel talimatlar ve önerilere göre işletildiğinde herhangi bir sorun teşkil etmez.

Tüm akülerin fiziksel bakımı araç gereçlerle, anahtarlarla ve ilgili eğitilmiş personel tarafından gerçekleştirilmelidir. Akü kullanımınaözel önem gösterilmelidir. Aküler bağlandıktan sonra, akü sonundaki voltaj inşalar için ölümcül bir derece olan 400VDC'yi aşacaktır.

Akü üreticisi akü kullanımı esnasında veya aküye yakınken önlemlerin uygun olduğunu temin etmiştir. Bu tür önlemler her zaman alınmalıdır. Yerel çevre şartları ile ilgili öneriler ve PPE sağlama üzerine düzenlemeler, ilk yardım ekipmanı ve yangın söndürme ekipmanı özel önem gerektirmektedir.

Uyarı: Bu ürün C2 Sınıfı STS'ye aittir ve yerleşim alanında kullanıldığında RF parazitlenmesi oluşturur. Bu durumda ek önlemler alınmalıdır.

İçindekiler

Bölüm 1 UPS Modülün Montajı	1
1.1 Kısa Tanıtım	1
1.2 İlk Kontrol	1
1.3 Yer Seçimi	2
1.3.1 UPS Odası	2
1.3.2 Harici Akü Odası	2
1.3.3 Depo Hata! Yer işareti tanımlanır	namış.
1.4 Konumlandırma	2
1.4.1 Sistem Dolabı	3
1.4.2 Dolabın kullanımı	3
1.4.3 İşletim Alanı	3
1.4.4 Ön giriş	3
1.4.5 Son konumlandırma	3
1.4.6 Bağlantı kurulumu	3
1.4.7 Kablo Giriş Modu	3
1.5 Dış Koruma Cihazı	3
1.5.1 Redresör ve Yan bağlantı Girişi	4
1.5.2 Harici Akü	4
1.5.3 UPS Çıkışı	4
1.6 Güç Kablosu	5
1.6.1 Maksimum Kararlı Durum Alternatif Akım ve Doğru Akım	5
1.6.2 Ekipman Bağlantı Noktası ve Zemin Arasındaki Mesafe	5
1.6.3 Kablo Bağlantısı	6
1.7 Kontrol Kablosu ve Bağlantı	7
1.7.1 Giriş Kuru Kontak Arayüzü	7
1.7.2 BCB Arayüzü	8
1.7.3 Bakım Baypas Anahtarı ve Çıkış Anahtarı Durumu Arayüzü	8
1.7.4 Çıkış Kuru Kontak Arayüzü	9
1.7.5 Uzak EOP Giriş Arayüzü	9
1.7.6 RS232 Arayüzü ve SNMP (Basit Ağ Yönetim Protokolü) Kart Arayüzü	10
Bölüm 2 Akü	11
2.1 Kısa Tanıtım	11
2.2 Güvenlik	11
2.3 Akü Dolabı	12
2.3.1 Kısa Tanıtım	12
2.3.2 Ortam Sıcaklığı	12
2.3.3 Boyut ve Ağırlık Ana Hatları	12
2.3.4 Anahtar Özelliği	13
2.3.5 Akü Sıcaklık Sensörü (İsteğe bağlı)	13
2.3.6 Akü Dolabının Kurulumu	13
2.3.7 Kablo Girişi	13
2.3.8 Akü Dolabı Yapım Şeması	14
2.4 Akü Güç Kablosu	17
2.4.1 Genel Bakış	17
2.4.2 Akü Kurulumu	17
2.4.3 Akü Kablo Bağlantısı	17

2.4.4 Akü Odası Tasarımı	17
2.5 Akü Kontrolü	18
2.6 Akü Bakımı	18
2.7 Akü Geri Dönüşümü	18
Bölüm 3 Paralel Sistemin Kuruluşu	19
3.1 Genel Bakış	19
3.2 Paralel Sistemde Her bir UPS Modülü	19
3.2.1 Dolap Kurulumu	19
3.2.2 Dış Koruma Cihazı	20
3.2.3 Güç Kablosu	20
3.2.4 Kontrol Kablosu	20
3.3 Çift-Veriyolu Sistemi	21
3.3.1 Dolap Kurulumu	21
3.3.2 Dış Koruma Cihazı	21
3.3.3 Güç Kablosu	21
3.3.4 Kontrol Kablosu	22
3.3.5 Çift Veriyolu Senkronizasyon Seçeneği (LBS Arayüzü Box)	22
Bölüm 4 Kurulum Seması	23
Bölüm 5 Calistirma	27
5.1 Kisa Tanitim	
5.1.1 Ayrı baypas Girişi	27
5.1.2 Statik Aktarim Anantari	
5.2 "1+N" Paralel Sistem	
5.2.1 Paralel Sistemin Ozeilikieri	
5.2.2 UPS Paralel Gereksinimieri	29
5.3 çalıştırma modu	29
5.3.1 Normal Mod	29
5.3.2 Aku Modu	29
5.3.5 Otomatik Başlatma Modu	
5.3.4 Baypas Modu	
5.3.5 Bakilli baypas modu (Maluel baypas)	
5.3.0 Falalei Tedekleme Modu (Sistem Genişletme)	
5.3.7 Flekalis Dolluşlurucu Modu	
5.4 Akü Vänetimi (Devreve Alma Fenasında Kurulum)	
5.4 1 Genel islevler	
5.4.1 Gelienis İslevler (Vazılım ile Devreye Alma Mühendisi Tarafından Kurulum)	
5.5 Akü Koruması (Devreve Alma Mühendisi Tarafından Kurulum)	
Bölüm 6 Calıstırma Asamaları	
6 1 Cüc Kaynağı Anabtarı	30
6.2 LIDS Baslangia	
0.2 OFS Daşıalıyıcı	
6.2.2 Akü Modu için Başlandıç Calıştırma Aşamaları	
6.3 Calıstırma Modları Gecis Adımları	
6.3.1 Normal Moddan Akii Moduna Gecis	
6.3.2 Normal Moddan Baynas Moduna Gecis	
6.3.3 Baynas Modundan Normal Moda Gecis	
6.3.4 Normal Moddan Bakım Baynas Moduna Gecis	ວວ
6.4 UPS Tamamen Kapatma Adımları	24

6.5 Direnç Güç Kaynağını Kesmeden UPS Kapatma Adımları	35
6.6 Acil Güç Kapatma (EPO) Çalıştırma Adımları	35
6.7 Otomatik Başlangıç	
6.8 UPS Resetleme Adımları	
6.9 Güç Modülü Bakım Seçeneği Kılavuzu	
6.10 Dil Seçimi	
6.11 Günce Tarih ve Saati Değiştirme	
6.12 Giriş Şifresi	
Bölüm 7 Operatör Kontrol Ve Ekran Paneli	
7.1 Kısa Tanıtım	
7.1.1 LED	
7.1.2Alarm Sesi(Beeper)	
7.1.3 Çalışma Kontrol Anahtarı	
7.1.4 LCD ve Menü Anahtarı	40
7.2 LCD Ekran Tipleri	40
7.2.1 Başlangıç Ekranı	40
7.2.2 Ana Ekran	41
7.2.3 Standart Ekran	42
7.3 Detaylı Menü Açıklaması	42
7.4 Hızlı Ekran Mesajı	44
7.5 Alarm Listesi	45
Bölüm 8 Seçenekler	49
8.1 Akü Topraklama Hatası Kitleri:	49
8.2 Uzaktan Alarm İzleme Paneli	49
8.3 Toz Ekran Değiştirme	50
Bölüm 9 Ürün Özellikleri	51
9.1 Uygulanabilir Standartlar	51
9.2 Çevre Özellikleri	51
9.3 Mekanik Özellikler	51
9.4 Elektriksel Özellikler (Giriş Redresör)	51
9.5 Elektriksel Özellikler (DC Bölümü)	
9.6 Elektriksel Özellikler (İnventer Çıkışı)	
9.7 Elektriksel Özellikler (baypas Ana şebeke Girişi)	53
9.8 Frekans, Termal Kaybı Ve Hava Değişimi	53
Ek 1 Lectotype ve Harici Akü Devre Kesicinin Bağlantısı	54

1

Bölüm 1 UPS Modülün Montajı

Bu bölüm ilk kontrol, yer seçimi, konumlandırma ve kablo bağlantısı da dahil olmaz üzere 30kVA~150kVA UPS sisteminin (Burada UPS olarak belirtilen) kurulumunu anlatmaktadır.

1.1 Kısa Tanıtım

Bu bölüm UPS ve ilgili cihaz için yer ve kablo seçimindeki gereksinimleri özetlemektedir.

Bu bölüm herhangi bir detaylı kurulum prosedürünü tanıtmayacaktır çünkü her bir mekanın kendine özel özellikleri vardır. Bu bölüm kurulum personeli için genel kurulum prosedürü ve metotlarını anlatacaktır, böylelikle bu mekanın özel durumlarını kullanabilsinler.

Vyarı: Profesyonel Kurulum Gerekli

UPS yetkili mühendis tarafından onaylandığında çalıştırılabilir.

UPS kurulumu bu kılavuzdaki tanımlara göre kalifiye mühendir tarafından gerçekleştirilmelidir. Detaylı mekanik ve elektrik kurulumu dökümanları teslimat üzerine bu kılavuzda yer almayan cihazlar için sağlanacaktır.

Not: Üç fazlı dört kablolu giriş gücü gerekli

Standart UPS sistemi üç fazlı dört kablolu (topraklama) TN, TT ve IT AC güç dağılım sistemine(IEC60364-3) bağlanabilir ve üç kablolu-dört kablolu dönüştürücü seçenekleri sağlar. IT AC güç dağılım sistemi kullanılırsa- 4 kutuplu devre anahtarı kullanılmalı. Lütfen ilgili IT sistemi standartlarına bakın.

Uyarı: akü tehlikesi

Akü kurulumuna özel özen gösterilmeli. Akü bağlandığında akü sonundaki voltaj insanlar için ölümcül olan 400Vdc'yi aşar. Gözlerinizi kıvılcımdan korumak için güvenlik gözlüğü takın.

Yüzük, saat gibi tüm metal aksesuarları çıkarın.

Araç gereçleri yalıtım kolu ile tutun.

Lastik eldiven giyin.

Aküde elektrolit kaçağı varsa veya akü zarar görmüşse yenilenmelidir. Yerel kurallara göre sülfürik asite dayanacak veya onu imha edebilecek bir çöp kutusuna aküyü koyun.

Eğer cildinize elektrolit temas ederse, hemen su ile yıkayın.

1.2 İlk Kontrol

UPS'i kurmadan önce aşağıdaki kontrolleri yapın:

1. Taşınırken herhangi bir zarar görüp görmediğini anlamak için UPS ve akünün içini ve dışını kontrol edin. Eğer herhangi bir hasar varsa acilen taşımacıya bildirin.

2. Cihazın ürün etiketlerinin doğru olup olmadığını kontrol edin. UPS modelini, kapasitesini ve temel verileri belirten cihaz etiketi cihazın kapısına yapıştırılır.

1.3 Yer Seçimi

1.3.1 UPS Odası

UPS kapalı alan kurulumu için tasarlanmıştır. Temiz ve iyi havalandırılmış bir ortamda kurulabilir ve ortam sıcaklığı ürün özellikleri ile uyumlu olmalıdır. (Bkz. Tablo 9-2)

UPS iç fan ile sağlanan basınçlı hava ile soğumaya uyum sağlar. Soğuk hava UPS dolabının ön hava sistemiyle UPS'in içine girer ve UPS'in yan hava sistemiyle boşalır. Lütfen havalandırma deliğini kapatmayın.

Ortam sıcaklığındaki artışı önlemek için gerektiğinde kapalı ortam aspiratörü kurulabilir. Tozlu ortam için hava ekranı kurulmalıdır.

Not: UPS sadece beton veya diğer yanmayan ortamlara yerleştirilebilir.

1.3.2 Harici Akü Odası

Akü şarjının sonunda az miktarda hidrojen ve oksijen üretilir, bu nedenle akü kurulum çevresinin temiz hava miktarı EN50272-2001 gereksinimlerini karşılamalıdır.

Akü için ortam sıcaklığı sabit tutulmalıdır. Ortam sıcaklığının ana faktörü akü kapasitesi ve ömrünü etkilemesidir. Akü için standart çalışma sıcaklığı 20 °C'dir. Yüksek sıcaklığı olan bir ortamda çalıştığında akünün ömrü kısalır; düşük sıcaklıklı bir ortamda çalıştığında akü kapasitesi azalır. Eğer akünün ortalama çalışma sıcaklığı 20 °C'den 30 °C'ye çıkarsa, akünün hizmet ömrü %50 oranında azalır. Eğer akünün çalışma sıcaklığı 40 °C'nin üzerindeyse, akünün hizmet ömrü katlanarak azalır. Akünün uygun ortam sıcaklığı genellikle 15 °C~25 °C'dır. Akü ısı kaynağı ve havalandırma deliğinden uzak tutulmalıdır.

Eğer harici akü kullanılırsa akü koruma cihazı (örn. Sigorta veya devre kesici) kurulmalıdır. Akü koruma cihazı aküye olabildiğince yakın kurulmalı ve akü koruma cihazı ve akü arasındaki mesafe en az olmalıdır.

1.3.3 Depo

Eğer UPS hemen kurulmazsa kapalı ortamda saklanmalı ve yüksek nem veya yüksek sıcaklıktan korunmalıdır (Bkz. Tablo 9-2) Akü kuru, düşük sıcaklıklı ve iyi havalandırılmış ortamda saklanmalı. En uygun saklama sıcaklığı 20 °C~25 °C'dır.

Uyarı: Akünün saklanması esnasında, akü kullanım kılavuzuna göre periodik olarak şarj edilmelidir. Şarj esnasında UPS aküyü şarj etmek için aktive etmek amacıyla geçici olarak AC şebesine bağlanabilir.

1.4 Konumlandırma

Hizmet ömrünü uzatmak için, UPS yer seçiminde aşağıdakilere dikkat edilmelidir:

- Uygun Kablo bağlantısı
- Yeterli işletim odası
- Isı dağılımı için yeterli derecede iyi bir havalandırma
- Hiçbir aşındırıcı gaz olmaması
- Yüksek nem ve ısı kaynağı olmaması
- Tozsuz ortam
- Yangın şartlarına uygunluk
- Çevre: +20 °C to +25 °C, örn. maksimum etkinlikteki akü için ısı aralığı(akü depolaması, taşımacılığı ve çevresi hakkında daha fazla bildi edinmek için bkz. Tablo 9-2)

Bu cihaz çıkarılabilir paneli ile çelik çerçeve yapısına uyar, üst ve yan panaller vida ile takılabilir.

UPS kapısını açınca, üç terminali, yardımcı terminal ve güç işletim anahtarı girersiniz. UPS ön kapısı temel çalışma durumu ve alarm bilgi ekranı sağlamak için işletim kontrol panelini barındırır. UPS ön hava girişi ve arka hava çıkışına sahiptir.

1.4.1 Sistem Dolabı

Her UPS sisteminin tasarım gereksinimlerine dayanarak, bir UPS sistemi UPS dolabı, harici akü dolabı, harici baypas dolabı gibi belirli cihaz dolaplarını içermelidir. Tüm dolaplar aynı yükseklikte olmalı ve estetik olması için yan yana kurulmalıdır.

UPS dolabının konumlandırılması için Bölüm 4 Kurulum Şemasına bakın.

1.4.2 Dolabin Kullanımı

UPS dolabını taşımak için kullanılacak cihazın yeterli kaldırma kapasitesi olmalıdır. Paletleri çıkarırken yeterli sayıda tutucu ve taşıyıcı cihaz olmalıdır.

UPS ağırlığının kaldırma ekipmanın kaldırma kapasitesini aşmadığından emin olun. Bkz. Tablo 9-3.

UPS forklift veya diğer benzer kaldırma ekipmanı ile taşınmalıdır.

Not: Akü dolabına aküler kurulurken özel özen gösterilmelidir. Taşıma mesafesi en aza indirilmelidir.

1.4.3 İşletim Alanı

UPS'in iki tarafında hava sistemi yoktur ve iki taraf için özel alan gereksinimi bulunmamaktadır. Günlük işletim esnasında UPS'de güç terminallerinin sıkılaştırmasını kolaylaştırmak için, ayrıca yer gereksinimlerini karşılamak için, UPS kapısı tamamen açıldığında iletimcilerin kolaylıkla geçebileceğinden emin olmak için UPS'in önünde yeterli alan bırakılmalıdır. UPS'in arkasında UPS'in düz egzosunu sağlamakiçin 150mm'lik yakınlık olmalıdır.

1.4.4 Ön Giriş

UPS'in parça düzeni UPS'in iki yanında ve arkasında yer gereksinimini büyük ölçüde azaltan ön ve üstten bakım, tanılama ve onarım işlemlerini kolaylaştırmaktadır.

1.4.5 Son Konumlandırma

UPS'in son konumlandırılmasından sonra UPS'i güvenilir bir şekilde özel araçlarla sabitleyin.

1.4.6 Bağlantı Kurulumu

Bölüm 4 Kurulum Şeması yere hangi ekipmanın sabitleneceği ile UPS tabanındaki ankraj montaj deliklerinin boyutları ve konumlarını listelemektedir. UPS eğer yükseltilmiş zemine monte edilirse, UPS ağırlığına (300kg'dan fazla) dayanabilecek uygun bir destek gereklidir. Desteği tasarlarken, lütfen Şekil 4-2 UPS alt görünüşüne bakın.

1.4.7 Kablo Giriş Modu

UPS ve akü dolabı düşük giriş moduna uyumludur. Kablolama esnasında, cihazından altındaki bariyer çıkarıldığında giriş deliğini göreceksiniz.

1.5 Dış Koruma Cihazı

Devre kesici veya başka bir koruma cihazı UPS sisteminin harici AC güç girişine kurulmalıdır. Bu bölüm kalifiye kurulum mühendisleri için genel bir kılavuz oluşturmaktadır. Kalifiye mühendisler cihaz kurulumu için yerel kablolama düzenlemelerini bilmektedir.

1.5.1 Redresör ve Yan bağlantı Girişi

Aşırı akım

Giriş dağıtım hattı ana ana şebekesine uygun bir aşırı akım koruma cihazı kurulmalıdır. Güç kablosu akım kapasitesi ve sistem aşırı yük kapasitesi gereksinimleri dikkate alınmalıdır (Bkz. Tablo 1) Tablo 1-1'deki %125 akımda IEC60947-2 açma eğrisi C (normal) ile termomanyetik devre kesici önerilmektedir.

Ayrı baypas: Eğer sistem ayrı baypasa uyumlu ise, giriş dağıtım hattı ana ana şebekesinde ana devre giriş ve baypas girişi için

koruma cihazı kurulmalıdır.

Not: Redresör gücü ve baypas giriş gücü aynı nötr hattı kullanmalıdır.

BT ızgara sistemi için, UPS'in harici giriş dağılımı ve dış çıkış dağılımında 4 kutuplu koruma cihazı kurulmalıdır.

Toprak kaçak akımı

UPS üst giriş dağılımındaki kaçak akım detektörü (RCD) aşağıdaki gibi olmalıdır:

- Dağılımağının DC tek yönlü darbesine (A sınıfı) hassas
- Geçici durum akım darbesine duyarsız
- 0.3A ve 1A arasında uygulanabilir sıradan hassasiyette

Kaçak akım devre kesici (RCCB) dağılımalanının DC tek yönlü darbesine (A sınıfı) hassas olmalı ancak Şekil1-1'de gösterildiği gibi geçici durum akım darbesine duyarsız olmalıdır.

Sekil 1-1RCCB sembolü

RCD ayrı baypas sistemi veya paralel sistemde kullanıldığında, yanlış alarmdan kaçınmak için RCD üst giriş dağılım alanına kurulmalıdır.

UPS'de RFI filtresi tarafından çekilen toprak kaçak akımı 3.5mA ve 1000mA arasındadır. Üst giriş dağılımı ve alt dağılımın (yüke) farklı cihaz hassasiyetini dikkate almak gerekir.

1.5.2 Harici Akü

Harici akü dolabındaki DC uyumlu devre kesici UPS ve akü için aşırı akım koruması sağlar.

1.5.3 UPS Çıkışı

UPS çıkış dağılımı koruma cihazı ile yapılandırılmalıdır. Koruma cihazı giriş dağıtım koruma şalterinden farklı olmalı ve aşırı yük koruması sağlayabilmelidir(Bkz. Tablo 1).

5

1.6 Güç Kablosu

Kabloları tasarlarken, Bu bölümün gereksinimlerine ve yerel kablolama düzenlemelerine uyun, çevre koşullarını dikkate akın ve IEC60950-1 Tablo 3B'ye bakınız.

Uyarı

UPS'i kablolamadan önce, UPS'in yeri ver durumu ve dağıtım anahtarları ana ana şebekelerinden emin olun. Bu anahtarların kapalı durumda olduğundan ve diğerlerinin çalışmasını önlemek için anahtarlara alarm etiketi yapıştırdığınızdan emin olun.

Maksimum Kararlı Durum Alternatif Akım ve Doğru Akım 1.6.1

	Nominal Akım (A)							Yuvarlak vida özellikleri					
UPS nominal gücü (kVA)	Tam y üzerine şebeke	vükte a e ana e giriş ak	küşarj ı ana tımı ^{1, 2}	Tam akımı²	yükte	çıkış	Minimum akü geriliminde akü		giriş / çık kablosu	kiş / baypas	Harici akü kablosu	Tork	yükü
gucu (KVA)	380V	400V	415V	380V	400V	415V	deşarj akımı	Bolt	Açıklık (mm)		(1911)		
150	280	265	255	225	215	205	525						
120	224	212	204	180	172	164	420						
90	168	159	153	135	129	123	315		M8	6	M6	5	
60	112	106	102	90	86	82	210						
30	56	53	51	45	43	41	105						
Not:		•	•	•	•						•		

Tablo 1-1Maksimum Kararlı Durum Alernatif Akım(AC) ve Doğru Akım (DC)

1. Redresör ve baypas ortak giriş yapılandırması için ana ana şebeke giriş akımı

2. Doğrusal olmayan yük (anahtar gücü) çıkış ve baypas nötr kablolarının tasarımı üzerinde etkiye sahiptir, çünkü nört kablolardaki akım nominal akımın 1.732'si olan nominal faz akımı aşabilir.

1. Koruyucu topraklama kablosu: dolapları ve ana topraklama sistemini bağlarken kablo aralığı en aza indirilmeli. Topraklama kablosunun kesit alanı AC güç kesintisi sınıfına, kablo uzunluğuna ve koruma tipine göre seçilmelidir. AS/IEC60950-1'e göre kesit alan genellikle 80mm² (150kVA)'dir.

2. Akü kablosunu seçerken, Tablo 1-1'deki akım değerine bakılmalıdır ve 4Vdc'lik maksimum gerilim düşmesine izin verilmektedir. Yük cihazı genellikle UPS yerine bağımsız koruma yolu ile dağılım ağına bağlanmaktadır. Multi-modül paralel sistemde her bir modül çıkış terminali ve paralel dağıtım yolu arasındaki moduül çıkış kablosu uzunluğu uygun olmalı ki akım dağılımındaki etkiyi azaltsın. Elektromanyetik parazit oluşumundan kaçınmak için lütfen

3. Kablo terminallerinin konumları için lütfen Şekil 4-4'e bakın.

Uyarı

İstenildiği gibi yere ulaşamama elektromanyetik parazit, elektrik şoku veya yangına neden olabilir.

Ekipman Bağlantı Noktası Ve Zemin Arasındaki Mesafe 1.6.2

Tablo 1-2 Ekipman Bağlantı Noktası ve Zemin Arasındaki Mesafe

UPS bağlantı noktası	Minimum mesafe (mm)
Redresör AC giriş güç kaynağı	284
baypas AC giriş güç kaynağı	284
UPS AC çıkışı	369
Akü güç kaynağı	369
Yardımcı kablo: Bağlantı takip panosu (U2)	1104

1.6.3 Kablo Bağlantısı

Bu bölümde belirtilen işlemler yetkili personel tarafından gerçekleştirilmelidir. Eğer herhangi bir sorunuz olursa, hemen şirketimizin müşteri hizmet departmanı ile iletişim kurun.

Cihaz uygun şekilde yerleştirildiğinde, Bölüm 4 Kurulum Şeması ve aşağıdaki aşamalarda gösterildiği gibi kablolama şemasına göre güç kablolarını bağlayın.

1. UPS'in tüm giriş dağılım anahtarlarının tamamen bağlantısının kesildiğine ve UPS'in tüm iç güç anahtarlarının bağlantısının kesildiğine emin olun. Başkalarının çalıştırmasını önlemek için anahtarların üzerine alarm etiketi yapıştırın.

2. UPS kapısını açıni ön koruma kapağını çıkarın ve daha sonra güç kablolarını bağlamak için terminal bloğunu göreceksiniz.

3. Koruyuzu topraklama kablosunu ve diğer gerekli topraklama kablolarını UPS güç cihazının alt tabaka dolabına bağlayın (dış güç terminal bloğına yakın dolap yanı). Tüm UPS dolapları kullanıcı topraklama sistemine göre bağlanmalıdır.

Not: Topraklama kablosu ve nötr kablo bağlantısı ilgili yerel ve ulusal düzenlemelere uyumlu olmalıdır.

Kurulum tipine göre iki adımdan birini seçerek giriş kablolarını takın ve bağlayın.

Ortak giriş bağlantısı

4. baypas ve redresör aynı ana ana şebeke girişini paylaşırsa, AC giriş kablosunu UPS giriş terminaline bağlayın (mA-mB-mC-mN). Sıkma torku 5 Nm (M6 bolt)dir. **Doğru sırayı uyguladığınızdan emin olun.**

Ayrı baypas bağlantısı

5. Eğer baypas ve redresör iki yönlü girişe uyarsa, redresör giriş kablosunu redresör giriş terminaline bağlayın (mA-mB-mC-mN), ve baypas güçgiriş kablosunu baypas giriş terminaline bağlayın (bA-bB-bC-mN). Sıkma torku 5 Nm (M6 bolt)dir. **Doğru sırayı uyguladığınızdan emin olun.**

Not: baypas ve redresör için iki yönlü ana ana şebeke girişli sistem için, baypas ve redresör girişi arasındaki kısa devre yolunu kaldırın. baypas giriş ve ana ana şebeke giriş nötr kabloları birlikte bağlanmalıdır.

Frekans dönüştürücü modu

Frekans dönüştürücü yapılandırması kabul edilirse, AC giriş kablosunu redresör giriş terminaline bağlayın (mA-mB-mC-mN). Sıkma torku 5 Nm (M6 bolt)dir. **Doğru sırayı uyguladığınızdan emin olun.**

AC baypas güç kablosunu baypas giriş terminaline bağlamak gerekmez (bA-bB-bC-mN).

Not: Frekans dnüştürücü çalıştırma modu için, baypas ve redresör girişi arasındaki kısa devre bloğunu kaldırdığınızdan emin olun.

Sistem çıkış bağlantısı

6. Sistem çıkış kablosunu UPS çıkış terminali (oA-oB-oC-oN) ve önemli yükler arasına bağlayın. Sıkma torku 5 Nm (M6 bolt)dir. **Doğru sırayı uyguladığınızdan emin olun.**

İşletme mühendisi geldiğinde eğer yük güç kaynağını almak için hazır değilse, sistem çıkış kablosu düzgün bir şekilde sonlandırılmalı ve yalıtılmalıdır.

7

Uyarı: Tehlikeli akü tarafı gerilimi 400Vdc
Positif terminalden pozitif terminale, negatif terminalden negatif terminale ve nötr terminalden nötr terminale gibi akü terminali ve
UPS terminali arasındaki kablo polarite bağlantısının doğruluğundan emin olun. Bununla birlikte, UPS akü terminali ve akü arasındaki kablo sadece işletme mühendisi tarafından onaylandığında bağlanabilir.
Pozitif terminalden pozitif terminale, negatif terminalden negatif terminale gibi akü terminalinden akü anahtarına ve akü anahtarından UPS terminaline kablo bağlantısı polarite doğruluğundan eminolun ve akü tabakaları arasındaki kablo/kabloların bağlantısını kesin. İşletim mühendisi tarafından onaylanmadıkça bu kabloları bağlamayın ve akü anahtarını kapatmayın.

7. Tüm koruma kapatlarını yeniden kurun.

1.7 Kontrol Kablosu ve Bağlantı

Şekil 1-2[^]de gösterildiği gibi baypas modülü ön panelinin kuru kontak arayüzü (J5 ~ J10) ve bağlantı arayüzü (RS232 arayüzü ve SNMP kart arayüzü) vardır.

Sekil 1-2 Kuru kontak arayüzü ve bağlantı arayüzü

UPS baypas modülünün phoenix terminaline bağlı harici giriş kuru kontak terminalinden sıfır voltaj (kuru kontak) kntak sinyali alır. Yazılım ayarı ile, bu kontaklar kısa + 12V pin ile devre yaptığında sinyal geçerli hale gelir. Tüm kontrol kabloları güç kablolarından uzak tutulmalı ve çift yalıtımlı kabloya uymalıdır. Kablo aralığı 25m~50m'ye ulaştığında, kesit alan 0.5mm²~1.5mm² olmalıdır.

1.7.1 Giriş Kuru Kontak Arayüzü

Giriş kontak arayüzler, J7 ve J8 çevre, akü topraklama hatası ve jeneratör kontağı sağlar. Bu arayüzlerin şematik görünümü Şekil 1-3'de gösterildiği gibidir ve arayüz tanımı Tablo 1-3'de gösterilmiştir.

Sekil 1-3 Giriş kuru kontak arayüzleri

Tablo 1-3 Giriş kuru kontak arayüzleri J7 ve J8 tanımı

Yeri	Adı	Anlamı
J7.1	ENV*	Akü odası ortamı algılaması (normalde kapalı)
J7.2	BtG	Akü topraklama hatası
J74	+12V	+ 12V güç kaynağı
J8.1	BAT_IN	Dahili akü sıcaklığı algılama
J8.2	+12V_A	+12V güç kaynağı
J8.3	BAT_OUT	Harici akü sıcaklık algılama
J8.4	GND_A	Güç kaynağı topraklama

Yeri	Adı	Anlamı
J7.1	ENV*	Akü odası ortamı algılaması (normalde kapalı)
J7.2	BtG	Akü topraklama hatası
J74	+12V	+ 12V güç kaynağı
Not*: Bu kuru kontaklar baş	latıldığında akü şarjı kapatılacaktır.	

1.7.2 BCB Arayüzü

J6 akü devre kesici (BCB) arayüzüdür. Arayüzlerin şematik gösterimi Şekil 1-4'de gösterildiği gibidir ve arayüz tanımı Tablo 1-4'de gösterilmiştir.

Sekil 1-4 BCB Arayüzü

Tablo 1-4 BCB Arayüz tanımı

Yeri	Adı	Tanımı
J6.1	DRV	BCB sürücü sinyali - (ayrılmış)
J6.2	FB	BCB temas durumu - (ayrılmış)
J6.3	GND	Güç kaynağı topraklama
J6.4	OL	BCB çevrimiçi - girişi (normalde açık): Bu pin BCB sinyali ulaştıktan sonra geçerlihale gelir.

BCB arayüzü ve BCB arasındaki bağlantısının şematik göstermi Şekil 1-5'de gösterilmiştir.

Sekil 1-5 BCB arayüzü ve BCB bağlantısı şeması

1.7.3 Bakım baypas Anahtarı Ve Çıkış Anahtarı Durumu Arayüzü

J9 bakım baypas anahtarı ve çıkış anahtar durumu arayüzüdür. Arayüzlerin şeması Şekil 1-6'da ve arayüz tanımı Tablo 1-5'de gösterilmiştir.

Sekil 1-6Bakım baypas anahtarı ve çıkış anahtarı durumu arayüzü

9

Yeri	Adı	Anlamı
J9.2	IN_S	Bakım baypas anahtarı durumu
J9.3	EXT_OUT	Çıkış anahtarı durumu
J9.4	GND	Güç kaynağı topraklama

1.7.4 Çıkış Kuru Kontak Arayüzü

J5 çıkış kuru kontak arayüzüdür ve iki röle çıkış kuru kontak sinyalleri sağlar. Arayüzlerin şeması Şekil 1-7'de gösterildiği gibidir ve arayüz tanımı Tablo 1-6'da gösterilmiştir.

Sekil 1-7Çıkış kuru kontak arayüzü şeması

Tablo 1-6Çıkış kuru kontak arayüzü tanımı

Yeri	Adı	Anlamı
J5.2	BFP_O	baypas Geri Besleme koruma rölesi (normalde açık), baypas SCR kısaldığında kapalı
J5.3	BFP_S	baypas Geri Besleme koruma rölesi merkez noktası
J5.4	BFP_C	baypas Geri Besleme koruma rölesi (normalde kapalı),), baypas SCR kısaldığında açık

1.7.5 Uzak EOP Giriş Arayüzü

UPS acil güç kapama (EPO) fonksiyonu sağlar. Bu fonksiyon UPS kontrol paneli üzerindeki EPO botununa basarak veya kullanıcı tarafından uzaktan kontak ile gerçekleştirilmektedir. EPO butonu menteşeli plastik kapat ile korunmaktadır.

J10 EPO giriş arayüzüdür. Arayüzlerin şeması Şekil 1-8[^]de gösterildiği gibidir ve arayüz tanımı Tablo 1-7'de gösterilmiştir.

Sekil 1-8Uzaktan EPO giriş arayüzü şeması

Tablo 1-7Uzaktan EPO giriş arayüzü tanımı

Yeri	Adı	Anlamı
J10.1	EPO_NC	Kısa devre J10.2 iken EPO tetikleyicisi
J10.2	+12V	Kısa devre J10.1 iken EPO tetikleyicisi
J10.3	+12V	Kısa devre J10.4 iken EPO tetikleyicisi
J10.4	EPO_NO	Kısa devre J10.3 iken EPO tetikleyicisi

J10 pin 3 pin 4 ile kısa devre yaptığında veya pin 2 ve 1 bağlantısı kesildiğinde, EPO tetiklenir.

Eğer hariici EPO fonksiyonu yapılandırılırsa, J10 pin 1 ve 2 ve pin 3 ve 4 bu fonksiyon için ayrılacak. Harici EPO cihazı iki terminal arasındaki normal açılan ve kapanan uzaktan kapama anaharlarına bağlamak için kalkanlı kablo kullanılmasını gerektirir. Eğer bu fonksiyonu kullanmak gerekmezse, J10 pin 3 ve 4 ve kısa devre pin 1 ve 2'nin bağlantısını kesin.

Not Not

- 1. UPS EPO işletimi redresör, inverter ve statik baypası kapatır ancak UPS giriş ana ana şebekelerinin bağlantısını kesmez. UPS'i tamamen kapatmak için EPO başlatıldığında üst giriş anahtarının bağlantısını kesin.
- 2. J10 pin 1 ve 2 teslimat esnasında kısa devre yapılmıştır.

1.7.6 RS232 Arayüzü ve SNMP (Basit Ağ Yönetim Protokolü) Kart Arayüzü

RS232 arayüzü: seri veri sağlar ve yetkili işletim ve bakım personeli tarafından UPS'de işletim ve bakım için kullanılır. SNMP kart arayüzü: opsiyonel bağlantı kartı, SNMP kart yerinde kurulumu için kullanılır.

Bölüm 2 Akü

Bu bölüm akü güvenliği, kontrolü, bakımı, geri dönüşümü ve dolabı da dahil olmak üzere akü ile ilgili bilgiler sunar.

2.1 Kısa Tanıtım

UPS akü dizgesi seri bağlantıdaki çeşitli akülerden oluşur ve UPS inverter için nominal DC giriş voltajı sağlar. Gereken akü yedekleme süresi (örn. ana şebeke arızasına yük sağlamak için akü zamanı) akünün amper saatlik değerine bağlıdır (akü dizgesi 12V'luk akünün 30 unitesinden oluşuyor olabilir). Bazen ceşitli akü dizgelerini paralel olarak bağlamak gerekebilir. 4 akü dizgesi aküden daha fazlasını paralel olarak bağlamamak gerekir. Farklı tipte, isimde, ve yenilikteki aküleri birlikte kullanmamak gerekir.

UPS akü dolabı ile donatılabilir.

İki tip akü dolabı vardır:

- 1. Akü dolabı, akü ve koruma cihazının toplam bir seti
- 2. Akü olmadan sadece akü dolabı ve koruma cihazı

UPS için harici akü dolabı 12Ah/12V akünün 36 ünitesine kadar alır. Bakım veya tamir yaparken, akü ve UPS arasındaki bağlantı kesilmelidir. Akü anahtarı manuel olarak açılabilir veya kapanabilir.

2.2 Güvenlik

UPS aküsünü çalıştırırken dikkatli olun. Tüm hücreler bağlandığında, akü dizgesinin voltajı insanlar için ölümcül olan 440Vdc'ye ulaşabilir. Lütfen yüksek voltajlı işletim için önlem alın. Sadece kalifiye personeş batariyi kurabilir veya bakımını yapabilir. Güvenlikten emin olun, harici aküler kilitli dolap veya özel atarlanmış akü odasının içine kurulmalı ki insanlar kolaylıkla ulaşamasın (kalifiye bakım mühendisi hariç).

Akü bakımı esnasında, aşağıdakilere özel dikkat gösterilmelidir:

- Bakım anahtarını AÇIK durumuna getirin.
- Yazılım ayar değeri akü hücrelerinin gerçek sayısı ile tutarlı olmalıdır.

Akü EMI panelindeki sigorta 600Vdc/30A'Lık kapasite ile hızlı bir sigortadır.

Akünün kurulum önlemleri, kullanımı ve bakımı akü üreticisi tarafından sağlanan akü kılavuzunda açıklanmıştır. Bu bölümde açıklanan güvenlik önlemlerikurulum tasarımı esnasında dikkate alınması gereken önemli hususlardır. Tasarım sonuçları yerel koşullara göre değiştirilebilir.

UYARI: koruma kapağı arkasında tehlikeli akü gerilimi vardır

Sadece araç gereçle açılabilen koruma kapağı arkasındaki kısımlar kullanıcı tarafından çalıştırılamaz. Sadece kalifiye bakım personeli bu koruma kapaklarını açabilir.

Harici akü bağlantısı için terminal bloğunu izole etmeden önce, lütfen tüm bağlantıları kesin.

Aküleri kullanırken aşağıdaki önlemlere dikkat edin:

1.Akü sağlam ve güvenilir bir şekilde bağlanmalıdır. Bağlantı tamamlandıktan sonra, tüm terminaller ve aküler arasındaki bağlantılar kalibre edilmelidir. Akü üretcisi tarafından sağlanan teknik özellikler ve kullanıcı kılavuzunda belirtilen tork gereksinimleri karşılanmalıdır. Tüm kablolama terminallerive aküleri arasındaki bağlantılar en az yılda bir defa kontrol edilmeli ve sıkılmalı. Aksi halde yangına yol açabilir!

UYARI: koruma kapağı arkasında tehlikeli akü gerilimi vardır

2.Akü görüntüsü aküyü kabul edip kullanmadan önce incelenmeli. Eğer paket hasar görmüşse,kirli akü terminali,terminal yıpranması, pas, ya da muhafaza çatlağı, deformasyon veya sıvı sızıntısı varsa yeni bir ürünle değiştirin. Aksi halde akü kapasitesinde azalmaya, elektrik sızıntısına veya yangına neden olabilir.

3.Akü çok ağırdır. Lütfen kaldırmak veya taşımak için uygun yöntem kullanın ki insanlara veya akü terminaline zarar vermekten kaçının. Akünün ağır zarar görmesi yangına yol açabilir.

4.Akü bağlantı terminali çekme veya kablonun bükülmesi gibi hiçbir baskıya maruz kalmamalıaksi halde akünün iç bağlantısı zarar görebilir. Akünün ağır zarar görmesi yangına yol açabilir.

5.Akü temiz, serin ve kuru bir ortamda kurulmalı ve saklanmalı. Aküyü mühürlü akü dolabı veya odasında kurmayın. Akü odası havalandırması EN50272-2001 koşullarını karşılamalı. Aksi halde akünün şişmesine, yangına veya insanların yararlanmasına neden olabilir.

6.Akü ısıtma ürünlerinden (dönüştürücü gibi) uzak kurulmalı, ateşten uzak kullanılmalı veya saklanmalı, ısıtma için yakılmamalı veya ateş tutulmamalı. Aksi halde akü sızıntısına, şişkinliğe, yangına veya patlamaya yol açabilir.

7.Akünün pozitif ve negatif terminalleri arasındaki kondüktöre doğrudan bağlamayın. Yüzük, saat, bileklik, kolye ve diğer metal malzemeleri aküyü çalıştırmadan önce çıkarın ve araç gereçlerin (İngiliz anahtarı gibi) yalım malzemesiyle kaplı olduğundan emin olun. Aksi haldeakü yanmasına, insanların ölümüne/yaralanmasına veya patlamaya yol açabilir.

8.Aküyü sökmeyin, modifiye etmeyin veya tahrip etmeyin. Aksi halde akü kısa devreye veya yaralanmaya yol açabilir.

9.Akü muhafazasını sıkılmış ıslak bezle temizliyin. Herhangi bir parazit veya kıvılcımdan kaçınmak için aküyü temizlerken kuru bez veya toz bezi kullanmayın. (tiner, benzin, uçucu yağ gibi) organik çözücü kullanmayın. Aksi halde akü muhafazası kırılabilir. Kötüsü yangına neden olabilir.

10. Akü sülfürük asiti seyreltir. Normal kullanımda seyreltilmiş sülfürük asit akünün bölmelerine veya kutup tabakasına sızabilir. Bununla birlikte eğer akü zarar görürse aküden asit sızabilir. Aküyü çalıştırırken kişisel koruma ekipmanı (koruuyucu gözlük, plastik eldiven ve önlük) kullanın. Aksi halde seyreltilmiş sülfürük asit gözlerinize kaçabilir ve körlüğe neden olur, eğer cilde temaz ederse, ciltte yanık oluşur.

11.Akü ömrü dolduğunda kısa devre, elektrolit kuruması veya pozitif kutup erozyon hatası oluşabilir. Eğer bu durumda hala kullanılmaya devam edilirse, aküde ısı kaçağı, şişkinlik veya sıvı sızıntısı olabilir. Lütfen bu aşamaya gelmeden aküyü yenileyin. 12.aü bağlantı kablosunu bağlamadan veya bağlantısını kesmeden önce lütfen şarjın bağlantısını kesin.

13. Aküde beklenmeyen şekilde topraklama olup olmadığını kontrol edin. Eğer akü beklenmeyen bir şekilde topraklama yapmışsa, topraklama gücünü kaldırın. Topraklama akünün herhangi bir kısmına dokunursanız elektrik çarpmasına maruz kalabilirsiniz.

2.3 Akü Dolabı

2.3.1 Kisa Tanıtım

Akü dolabı diğer yüksek kapasite içeren be sistem için uzun yedekleme süresi sağlayan aküleri içeren diğer dolaplarla birlikte kullanılabilir.

İki veya daha fazla akü olduğunda bu dolaplar yan yana bağlanabilir. Eğer akü dolabı UPS'in yanına yerleştrilirse, akü dolabı ve UPS cıvatalarla bağlanabilir.

2.3.2 Ortam Sıcaklığı

Eğer akü dolabı ve UPS aynı odaya kurulursa, maksimum ortam sıcaklığı UPS yerine aküye göre belirlenir. Yani eğer vana kontrollü akü kullanılırsa kapalı ortam sıcaklığı 0 °C~40 °C (ana cihazın çalışma sıcaklık aralığı) yerine 15 °C~25 °C olmalıdır. Ortalam sıcaklığın 25 °C'ı aşmaması koşuluna göre sıca süreli ısı sapması olabilir.

2.3.3 Boyut ve Ağırlık Ana Hatları

Akü dolabının boyutları Tablo 2-1'de gösterildiği gibidir. Akü dolabı UPS ile aynı derinlik ve yüksekliğe sahiptir ve estetik görünüm olarak yan yana konulabilirler. Akü dolabının kapıları vardır. Yerini olanlarken kapıların kurulum veya akülerin çıkarılması için tamamen açılabileceği şekilde boşluk bırakılmalıdır.

Akü dolabının ağırlığı Tablo 2-1'deki gibir. Akü kurulumunu tasarlandığında akü dolabı akü ve kablo ağırlığını da içermelidir. UPS'in yükseltilmiş zemine kurulması çok önemlidir.

Tablo 2-1 OAKü dolabının taslak boyutları ve ağırlığı

Dolap adı	W×D×H (mm)	Ağırlık(kg, akü hariç)
Akü dolabı	820×700×1400	170

2.3.4 Anahtar Özelliği

UPS'in harici aküsü akü sigortası veya isteğe bağlı akü anahtarı (durum kontağı sağlayan ama gerilim açma bobini olmayan) ile korunuz. Detaylı bilgi için bkz. 2.5 Akü kontrolü.

2.3.5 Akü Sıcaklık Sensörü (İsteğe bağlı)

Harici akü sıcaklık sensörü şekil 2-1'de gösterildiği gibi sıcaklık probu ve sıcaklık iletim panelinden oluşmaktadır. Akü sıcaklık sensörü UPS izleme paneline bağlıdır.

Cabl W2 is delivered together with the temperature sensor

W2 kablosu sıcaklık sensörü ile iletilir. Sekil 2-1Tek bir akü sıcaklık sensörü ve izleme paneli U2

2.3.6 Akü Dolabının Kullanımı

Akü dolabı ağırlığının kaldırma ekipmanın kapasitesini aşmadığından emin olun. Akü dolabı ağırlığı için lütfen Tablo 2-1'e bakınız.

Akü dolabı ayrıca forklift ve diğer benzer ekipmanlarla tanışabilir.

Not

Akü dolabını taşırken dolaba aküyü kurmayın. Eğer gerekirse her aküyü ayrı bir şekilde düzenleyin ve taşıma mesafesini en aza indirin.

Son konumlandırmadan sonra aküyü özel tutucularla güvenilir bir şekilde sabitleyin.

Sert zemine aküyü sabitlerken depreme dayanıklı parçalar (isteğe bağlı olarak) kullanılabilir.

2.3.7 Kablo Girişi

Akü dolabı düşük giriş moduna uyar. Kablolama esnasında cihazın altındaki bariyeri kaldırdığınızda giriş deliğini göreceksiniz.

2.3.8 Akü Dolabı Yapım Şeması

Akü dolabının yapım şeması için Şekil 2-2 ve Şekil 2-5'e bakınız.

Sekil 2-2Akü dolabının alt giriş şeması

Sekil 2-3 Akü dolabı sigortası ve isteğe bağlı anahtarın şeması

Bottom inlet

Sekil 2-4 Akü dolabının iç tasarım şeması Tablo 2-2

NO	Parça adı			
1	Demir ızgara			
2	Demir ızgara			
3	Orta kutup			
4	Küçük NXe için BC kapak parçası			
5	Topraklama çubuğu			
6	Değişken somun M4			
7	Değişken somun M6			
8	Değişken vida M6x16			
9	Değişken somun M6			
10	Gömme vida M6x16			
11	Yaylı pul M4			
12	Düz pul M4			
13	Mantar Philipps vida M6 x 12			

Sekil 2-5 Akü dolabının alt girişi

2.4 Akü Güç Kablosu

2.4.1 Genel Bakış

Aküleri lütfen aşağıdaki tanım ve grafiklere göre kurun ve bağlayın.

2.4.2 Akü Kurulumu

1. Kurulumdan önce hasar olmadığından emin olmak için akü görnüşünü kontrol edin, malzemeleri kontrol edin ve sayın, bu kılavuzu ve akü üreticisinin sağladığı kullanıcı kılavuzunu veya kurulum talimatlarını dikkatlice okuyun.

2. Akülerin etrafındaki düz hava akışı için akülerin yan tarafları arasında 10mm'lik boşluk olmalı.

3. Akünün izlenmesini ve bakımını kolaylaştırmak için akünün üst vedaha üst tabakaları arasında belirli boşluk sağlanmalı.

4. Aşırı ağırlık merkezinden kaçınmak için aküler alt tabakadan üste kurulmalı. Akü düzgün bir şekilde kurulmalı ve sallama veya şoktan korunmalıdır.

5. Akü gerilimini ölçün ve UPS'i başlatmadan önce kalibre edin.

2.4.3 Akü Kablo Bağlantısı

1. Akü dolabı yükseltilmiş zemine kurulduğunda, akü güç kablosu ve akü kontrol kablosu anahtarı akü altından UPS dolabına girebilir. Eğer UPS ve akü dolabı sert zemine yan yana kurulursa, bu kablolar akü dolabının alt kısmındaki giriş deliklerinden dolaba girebilir.

2. Çoklu akü kullanıldığında seri halinde ve paralel olarak bağlanabilir. Yükleme ve başlatmadan önce toplam akü geriliminin belirlendiği gibi olduğu tespit edilmelidir. Akülerin negatif ve pozitif kutupları akü ve UPS üzerindeki etiketlere göre UPS'in negatif ve pozitif akü terminallere bağlanmalıdır. Eğer akü ter bağlanırsa, patlama veya yangına neden olabilir, akü veya UPS hasarına veya yaralanmaya yol açabilir.

3. Akü kablo bağlantısı tamamlandığında terminaller için yalıtım kalkanını kurun.

4. Akü terminali ve akü anahtarı arasındaki kabloları bağlarken, anahtar ilk olarak bağlanmalı.

5. Kablonun bükülme yarıçapı 10D'den daha geniş olmalı, D kablonun dış çapıdır.

6. Akü kablosu bağlandığında, akü kablosu ve kablo terminalini çekmek yasaktır.

7. Bağlantı esnasında akü kablolarını üst üste geçirmeyin ve akü kablolarını birlikte bağlamayın.

2.4.4 Akü Odası Tasarımı

Hangi kurulum tipinin uygulandığına bakmaksızın, aşağıdaki maddelere dikkat edin (bkz. Şekil 2-6):

1. Hücrelerin tasarımı

Hangi akü kurulum sistemi kullanıldığına bakılmaksızın, akü aynı zamanda 150V'dan fazla potansiyel farkı ile iki çıplak canlı parçaya temas etmeyen bir düzende yerleştirilmeli. Eğer bundan kaçınılabilinirse, yalıtılmış terminal kalkanı ve yalıtılmış kablosu bağlantı için kullanılabilir.

2. Çalışma tezgahı

Çalışma tezgahı (veya pedal) kaymaz ve yalıtılmış ve en az 1m çapında olmalıdır.

3. Kablolama

Tüm kablolama aralıkları en aza indirilmeli.

4. Akü devre kesici (BCB)

BCB genellikle akünün yanında duvara monte edilen kutuya kurulur. UPS anahtar kutusunun bağlantı metotu için lütfen 2.5 Akü kontrolüne bakın.

Sekil 2-6 Akü odası tasarımı

2.5 Akü Kontrolü

Akü sıcaklık algılama kablosu şekil 2-1'de gösterildiği gibi UPS yardımcı terminali X3 BCB, akü sıcaklık sensörü ve akü arasına bağlanır.

X3 BCB bağlama kablosunun koruyucu topraklama kablosu veya kalkan tabakası vardır, güç kablosundan uzak durur ve iki tabakalı yalıtılmış kabloya uyar. Kablolama aralığı 25m~50m'ye ulaştığında, kesit alan 0.5mm²~1mm² olur. Kalkan kablosu UPS koruyucu alan yerine akü dolabı veya BCB'ye bağlanır.

2.6 Akü Bakımı

Akü bakımı ve bakım önlemleri için IEEE-Std-1188-2005 ve akü üreticisi tarafından sağlanan ilgili kılavuzlara bakınız.

Herhangi bir gevşek bağlantı için akü bağlantı parçalarının vidalarını periodik olarak kontrol edin. Eğer gevşek bir vida varsa hemen sıkılaştırın.

Tüm güvenlik cihazlarının yerinde olduğundan ve normal olarak çalıştığından ve akü yönetim parametrelerinin düzgün bir şekilde kurulduğundan emin olun.

Akü odasının içindeki hava sıcaklığını ölçün ve kaydedin.

Akü terminalinin herhangi bir zarar alıp almadığını veya ısınma işareti olup olmadığı ve kapağın hasar görüp görmediğini kontrol edin.

2.7 Akü Geridönüşümü

Eğer aküde sıvı sızıntısı varsa veya zarar görmüşse, aküyü sülfürük asite dayanıklı konteynıra koyun veya yerel düzenlemelere göre atın.

Kullanılan kurşun asit depolama aküsü tehlikeli atıktır ve kullanılan akü kirlilik kontrolü için anahar malzemedir. Akünün depolaması, taşınması, kullanımı veya atılması yerel veya ulusal tehlikeli atık ve kullanılmış akü kirliliğinin önlenmesi ve diğer standart düzenelemelerine ve kanunlaarına göre yapılmalıdır.

İlgili ulusal düzenlemelere göre, kullanılan kurşun asit depolama aküsü dönüştürülmeli ve diğer metotlarla atılmamalıdır. Kullanılan kurşun asit depolama aküsünün rastegele atılması veya diğer uygun olmayan şekillerle atılması çevre kirliliğine yol açar ve ilgili kişiler yasal sorumlulukları araştırmalıdır.

Kurşun asit depolama akü tedarikçisi olarak Power Ltd. Şti. kurşun asit depolama aküsünün yasal ve uygun olarak atılması için müşteriye yardım edici hizmet ağı ve kullanılmış akü dönüşüm sistemi kurmuştur. Power Ltd. Şti.'nin kullanılmış akü dönüşüm sistemi hakkında detaylı bilgi almak için Power Ltd. şti. ofisine başvurun. Eğer müşteri bu notu almayı veya Power Ltd. şti kullanılmış akü geri dönüşüm sistemi kullanmayı reddederse, Power Ltd. şti. kullanılan akü ürünlerin düzgün olmayan bir şekilde atılmasından kaynaklı çevre sorumluluklarını kabul etmez.

Bölüm 3 Paralel Sistemin Kuruluşu

Bu bölüm paralel sistemin kurulumu ve kablolamasını içerir.

3.1 Genel Bakış

Paralel sistem kuruluşu UPS modülü kurulum adımları ve bu bölümün gerektirdiklerine göre gerçekleştirilmelidir. Her modülün EPO'sunu kontrol etmek için her UPS modülünün ön panelinde EPO butonuna ek olarak paralel sistem ayrıca şekil 3-1'de gösterildiği gibi ayrı bir terminalden kapatmak için her UPS modülünü kontrol etmek için ayrı EPO fonksiyonları sunar.

Sekil 3-1 APO devresinin bağlantı şeması

3.2 Paralel Sistemde Her bir UPS Modülü

Paralel sistemin temel kurulum adımları UPS modülününküyle aynıdır. Aşağıdaki bölümler paralel sistem kurulumu ve UPS modülü kurulumu arasındaki farkları gösterir.

3.2.1 Dolap Kurulumu

Her UPS modülünü yan yana koyun, ve şekil 3-2'de gösterildiği gibi her bir modül arasındaki bağlantıları düzenleyin. Uygun bakım ve sistem testi için harici baypas dolabı önerilir.

Connected to load

3.2.2 Dış Koruma Cihazı

UPS modülünün kurulumu Bölüm1'e bakınız.

3.2.3 Güç Kablosu

Güç kablosunun bağlanması UPS modülününkü ile aynıdır. baypas ve ana ana şebeke devresinin giriş güç kaynağı aynı nötr hat giriş terminalini kullanmalıdır. Eğer girişin akım sızıntı koruyucusu varsa, sızıntı koruyucusu giriş terminaline giriş kablosu bağlantısından önce düzenlenmelidir. Bkz. Bölüm 1 UPS modülünün kurulumu.

Not: UPS modülünün güç kabloları (baypas giriş kablosu ve UPS çıkış kablosu dahil olmak üzere) aynı uzunluk ve özelliklerde olmalıdır ki akım paylaşım etkisi baypas modunda fark edilsin.

3.2.4 Kontrol Kablosu

Paralel kablo

5m, 10m ve 15m'lik uzunlukta çift tabakalı yalıtım kalkanlı paralel kabloları şekil 3-3'de göserildiği gibi kapalı bir hat oluşturmak için tüm UPS modülleri arasında bağlantı kurmak için kullanılabilir. Paralel paneli her UPS baypas modülünün sol tarafına kurulur. Kapalı hat bağlantısı paralel sistem kontrolünün güvenirliğini garanti altına almalıdır. Bağlangıçtan önce kabloların doğru bağlandığından emin olun! Bkz. Şekil 3-3.

Sekil 3-3"1+N" sistemi paralel kontrol kablo bağlantısı (X2 kuru kontak ve paralel sinyal panelidir)

3.3 Çift-Veriyolu Sistemi

3.3.1 Dolap Kurulumu

Şekil 3-4'de gösterildiği gibi, çift-veriyolu sistemi iki bağımsız UPS sisteminden oluşur. Her bir UPS sistemi bir veya daha fazla paralel UPS modülü içerir. Çift-veriyolu sisteminin güvenirliği yüksektir ve çeşitli giriş terminalleri ile yüke uygulanabilir. Tek girişli yük için, iseğe bağlı statik aktarım anahtarı standart modellerdeki yük veriyolu senkronizasyon (LBS) sistemini başlatmak için eklenebilir. Sistem kurulumunu farklı sistem yapılandırmaları için kurulum talimatlarına göre gerçekleştirin.

Her bir UPS modülünü yan yana koyun ve her bir modülün bağlantısını aşağıdaki gibi düzenleyin.

Çift-veriyolu sistemi LBS ile iki bağımsız (veya paralel) UPS sistemlerinin senkronizasyon çıkışlarını gerçekleştirir. Bir sistem master sistemdir, diğeri ise slave sistemdir. Çift-veriyolu sisteminin çalıştırma modu master sistem ve/veya slave sistemin normal veya baypas modunu içerir.

Sekil 3-4 Tipik çift-veriyolu sistemi (statik aktarım anahtarı ve yük veriyolu senkronizasyon sistemi ile)

3.3.2 Harici Koruma Cihazı

Bölüm 1 UPS modülünün Kurulumuna bakınız.

3.3.3 Güç Kablosu

Güç kablosunun bağlanması UPS modülününküne benzerdir. baypas ve ana ana şebeke devre giriş güç kaynağı aynı nötr hattı giriş terminalini kullanır. Eğer giriş sızıntı akım koruma cihazı kullanılırsa, sızıntı akım koruma cihazı nötr giriş terminaline giriş kablosunun bağlanmasından önce kurulmalıdır.

Bölüm 1 UPS modülünün Kurulumuna bakınız.

3.3.4 Kontrol Kablosu

UPS bağlantısına UPS çift-veriyolu sistemi için şekil 3-5'de gösterildiği gibi LBS kablolarını iki paralel sistemin herhangi iki LBS arayüzüne bağlayın.

UPS1 UPS kuru kontak ve paralel sinyal paneli UPS2 UPS kuru kontak ve paralel sinyal paneli UPS 3 UPS kuru kontak ve paralel sinyal paneli UPS n UPS kuru kontak ve paralel sinyal paneli

Sekil 3-5 Tipi çifr-veriyolu siseminin bağlantısı (LBS sistemini kullanarak)

Not: paralel veriyolu ile bağlanan iki1+1 paralel sistemden oluşan çift-veriyolu sisteminin bağlantı örneği (8).

3.3.5 Çift Veriyolu Senkronizasyon Seçeneği (LBS Arayüzü Box)

UPS olmayan UPS çift-veriyolu sistemi için (başka üretici tarafından üretilen diğer Liebert UPS veya UPS serileri), LBS arayüz kutusu UPS olmayana kurulmalıdır. Bu arada, diğer UPS sistemi aşağıdaki durumlar dahil olmak üzere master sistem olarak çalışır:

- Hem master sistem hem de slave sistem normal modda çalışır.
- Master sistem baypas modunda, slave sistem normal modda çalışır.

Not Not

LBS arayüz kutusu 150m iki grup UPS'den oluşan çift-veriyolu sisteminin LBS kablo uzunluğunu aşacak şekilde kullanılabilir.

Bölüm 4 Kurulum Şeması

Bu bölüm UPS kurulum şemasını sunar.

Sekil 4-1UPS'in elektrik bağlantı şeması

Sekil 4-2 UPS montalama boyutları şeması (birim: mm)

Sekil 4-3 UPS'in ön görünümü (Kapı açık)

Note:

1. mA/bA-mB/bB-mC/bC-mN main circuit/bypass mains input

2 oA-oB-oC-oN UPS output 3 BAT+/BAT-/BAT_N battery input

Sekil 4-4 UPS terminallerinin şeması

Sekil 4-5 Master güç modülü

Sekil 4-6 baypas güç modülü

baypas güç modülü kurulum notları:

1. İstikrarsız ağırlık merkezinden kaçınmak için modüllerin kurulumu alttan üste yapılmalı ve modüllerin söküm sırası üstten alta yapılmalı.

- 2. Modülü takmadan önce hazır anahtarın hazır olmayan bir durumda olduğundan emin olun.
- 3. Modülleri taktıktan sonra, hazır anahtarı açmadan önce tüm cıvataları takın.
- 4. Modülü sökmeden önce ilk olarak hazır anahtarını kapatın ve sonra cıvataları çıkarın.
- 5. Sökülen modülleri yeniden takmadan önce, kapatmadan sonra 5 dakika bekleyin.

Bölüm 5 Çalıştırma

Bu bölüm UPS çalışmasıyla ilgili bilgiler sunar. Bu bölüm UPS çalışma modu, paralel sistem özellikleri, akü yönetimi ve koruması vb. içermektedir.

// UYARI: koruma kapağı arkasındaki tehlikeli ana ana şebeke kaynağı ve/veya akü gerilimi

Koruma kapağı arkasındaki araç gereçle açılan parçalar kullanıcı tarafından çalıştırılamaz. Sadece kalifiye personel bu koruma kapaklarını açabilir

5.1 Kısa Tanıtım

UPS bağlantı ve veri işleme cihazları ve ekipmanı gibi önemli yükleriniz için istikrarlı kesintisiz yüksek kaliteli AC güç kaynağı sağlar. UPS çıkış voltajı yetersiz ana ana şebeke kaynağı, kesilimi ve zirvesinden kaynaklanan voltaj, frekans dalgalanması ve kesimi ile oluşan etkilere maruz kalmaz.

UPS yüksek derecede güvenirlik ve kolay kullanım sağlayan en son yüksek frekanslı çift çevrim darbe genişlik modülasyonu (PWM) teknolojisi ve tam dijital kontrol (DSP) teknolojine uyar.

Şekil 5-1'de gösterildiği gibi, AC ana ana şebeke kaynak girişi redresör ile DC güç kaynağına dönüştürülür. Daha sonra DC güç kaynağı veya aküden DC güç kaynağı inverter ile yük için AC güç kaynağına dönüştürülür. Ana ana şebeke kaynaklarında bir kesinti oluştuğunda, akü inverter ile yükleriçin yedekleme güç kaynağı sağlar. Ana ana şebeke kaynağı statik baypas ile yük için güç kaynağı sağlar.

UPS için bakım veya onarım çalışması gerektiğinde, yük güç kaynağında kesilme olmadan bakım baypas güç kaynağına anahtarlanabilir.

Sekil 5-1Ayrı baypas giriş yapılandırması ile UPS modül sistemi şeması

5.1.1 Ayrı baypas Girişi

Şekil 5-1 "ayrı baypas güç kaynağı" (örn. baypas bağımsız ana ana şebeke girişine uyar) olan UPS modülünün şemasını gösterir. Ayrı baypas yapılandırmasında, statik baypas ve bakım baypası bağımsız bir güç kaynağı anahtarı ile özel bir baypas güç kaynağına bağlı olan aynı bağımsız baypas güç kaynağını paylaşır. Eğer baypas güç kaynağı geçerli değilse, baypas redresör giriş güç kaynağı terminaline kısa devre yapabilir.

5.1.2 Statik Aktarım Anahtarı

Şekil 5-1'de gösterilen "Statik anahtar" statik baypas hattı ile inverter çıkışı veya baypas güç kaynağına yükü bağlayan elektronik kontrollü aktarım devresi içerir. Normal olarak, yük gücü inverter ile sağlanır, aşırı yük veya invertör arızası üzerine yük otomatik olarak statik baypas güç kaynağına aktarılır.

Normal çalışma koşulları altında, inverter çıkışı statik baypas güç kaynağı ile senkronizasyon içinde olmalıdır, sadece bu şekilde inverter güç kaynağı ve statik baypas güç kaynağı arasındaki kesintisiz aktarım uygulanabilir. İnverter çıkışı ve statik baypas güç kayanğının senkronizasyonu inverterin kontrol devresi ile uygulanır. Statik baypas güç frekansı izin verilen senkronizasyon aralığında olursa, inverter kontrol devresi statik baypas güç frekansı ile inverter çıkış frekansını senkronize eder.

UPS ayrıca manuel kontrol bakım baypası saplar. Rutin bakım ve tamir için UPS'in kapatılması gerekirse, UPS bakım baypası ile önemli yükler için güç kaynağı sağlayabilir.

Not

UPS baypas modunda çalıştığında veya bakım baypası ile yük sağladığında, yük ekipmanı hiçbir AC güç anormallik korumasına sahip değildir.

5.2 "1+N" Paralel Sistem

Şekil 5-3'de gösterildiği gibi, "1+N" sistemi 4 UPS modülünden oluşabilir, bu nedenle sistem kapasitesi veya güvenirliği veya ikisi birden geliştirilebilir. Pararlel bağlantıdaki her bir UPS modülü yükü eşit olarak paylaşır.

Sekil 5-2Harici bakım baypas anahtarı ile "1+N" UPS sistemi

Ek olarak, iki UPS modülü veya "1+N" sistemleri ayrıca dağıtılmış yedekli sistem içerebilir. Her bir UPS modülü veya sisteminin bağımsız çıkışı vardır ve çıkış senkronizasyonu önemli yük için iki sistem arasında kesintisiz aktarım sağlayan yük veriyolu senkronizasyonuyla sağlanabilir. Detay için 5.3 Çalıştırma moduna bakınız.

5.2.1 Paralel Sistem Özellikleri

1. Paralel UPS yazılımı ve donanımı UPS modülününkü ile tamamen aynıdır ve paralel sistemin yapılandırılması parametre ayar yazılımı ile yapılabilir. Paralel sistemdeki UPS modülleri parametreleri aynı şekilde kurulabilir.

2. Paralel kontrol kabloları sistem için güvenirlik ve yedekleme sağlayan yakın bir döngü bağlantısı oluşturur.

Çift-veriyolu kontrol kablosu iki veriyolunun herhangi iki UPS modülü arasındaki bağlantı için kullanılır. Akıllı paralel mantığı kullanıcı için maksimum esneklik sağlar. Örneğin; paralel sistemdeki her bir UPS modülü herhangi bir sırayla kapatılabilir veya başlatılabilir. Normal mod ve baypas modu arasındaki kesintisiz aktarım uygulanabilir ve otomatik olarak yenilenebilir; örn. aşırı yük durumu ortadan kaldırıldığında, sistem orijinal çalışma moduna otomarik olarak yeniden devam edebilir.

3. Paralel sistemin toplam yükü herbir UPS modülü ile kontrol edilebilir ve izlenebilir.

5.2.2 UPS Paralel Gereksinimleri

Paralel bağlantıdaki çeşitli UPS modüllerinden oluşan bir UPS sistemi geniş bir UPS sistemine eşittir, ancak yüksek sistem güvenirliği sağlar. Her bir UPS modülün eş kullanımından ve kablolama standartlarına uygun olduğundan emin olmak için aşağıdaki koşulları yerine getirin:

1. Tüm UPS modülleri aynı kapasitede olmalı ve aynı baypas güç kaynağına bağlanmalıdır.

2. baypas ve redresör giriş gücü aynı nötr hat giriş terminallerine bağlanmalıdır.

3. Eğer kaçak akım cihazı (RCD) kullanılırsa, ortak nötr hat giriş terminalinin önüne doğru bir şekilde kurulmalıdır. Veya cihaz sistemin koruyucu toprak akımını izlemelidir. İçindekiler bölümünden önce "Uyarı: Geniş sızıntı akımı" bölümüne bakınız.

4. UPS modüllerinin tümçıkışları aynı çıkış veriyoluna bağlanmalıdır.

Not

Eğer gücün ortak bir nötr hattı yoksa veya hiçbir nötr hatta ulaşılmıyorsa, yalıtım dönüştürücü sağlanabilir.

5.3 Çalıştırma Modu

UPS aşağıdaki çalışma modlarına sahip, çevrim içi, çift dönüşümlü ve ters anahtarlamalı bir sistemdir:

- Normal mod
- Akü modu
- Otomatik başlangıç modu
- baypas modu
- Bakım baypas modu (manuel baypas)
- Paralel yedekleme modu
- Frekans dönüştürücü modu
- Uyku modu

5.3.1 Normal Mod

Ana ana şebeke kaynağı UPS redresörsuna AC gücü, daha sonra redresör da invertere DC gücü ve son olarak inverter yüke kesintisiz AC gücü sağlar. Aynı zamanda redresör akü şarjı ile akü şarjını iyileştirir.

5.3.2 Akü Modu

Akü modu akü akü iyileştirme devresi ile inverter tarafından yük için yedekleme güç kaynağı sağlarken bir çalıştırma modudur. Ana ana şebeke arızası oluştuğunda, sistem otomarik olarak akü moduna geçer ve yüke güç kaynağı kesilmez. Ana ana şebeke daha sonra yeniden başladığında, sistem manuel müdahale ve yük güç kesintisi olmadan otomatik olarak normal moda geçer.

30 Bölüm 5 Çalıştırma

Not: Akü soğuk çalıştırma metotu ayrıca ana ana şebeke kaynağı kapalı iken akü (şarj) modudan UPS'i başlatmak için uyumludur. Bu şekilde, akü gücü bazı koşullar altında sistem kullanımını geliştirmek için bağımsız bir şekilde kullanılabilir.

5.3.3 Otomatik Başlangıç Modu

UPS'in otomatik başlangıç fonksiyonu vardır. Ana ana şebeke bozulmasından ve akünün EOD voltajına boşalmasından dolayı inverter kapandığında, eğer ana ana şebeke yeniden başlamazsa belirli bir gecikmeden sonra UPS otomatik olarak başlar. Bu fonksiyon ve otomatik başlangıç için gecikme süresi kurulum mühendisi tarafından kurulabilir.

5.3.4 Baypas Modu

Normal modda, inverter arızası, aşırı yükü veya manuel olarak kapanması üzerine, statik aktarım anahtarı yük güç kesintisi olmadan inverter tarafından baypas güç tarafına yükü aktarır. Eğer inverter baypas ile senkronize edilmezse ve statik anahtar yükü inverterden baypas gücüne aktarmazsa kısa zamanlı yük güç kesintisi oluşur. Bu fonksiyon eş zamanlı olmayan paralel AC gücünden kaynaklanan geniş akım sirkülasyonundan kaçınmaya yardımcı olabilir. Yük gücü kesintisi zamanı ayarlanabilir ve genellikle döngünün ³/₄'ünden daha azdır; örneğin sıklık 50Hz olduğunda kesinti süresi 15ms'den daha azdır, sıklık 60Hz olduğunda ise 12.5ms'den daha azdır.

5.3.5 Bakım Baypas Modu (Manuel Baypas)

Eğer UPS bakım ve onarım çalışması gerekiyorsa, güç kaynağı kesintisi olmadan manuel baypas anahtarı ile yükü bakım baypasına aktarım yapabilirsiniz.

Manuel baypas anahtarı topral yük kapasitesi gereksinimlerini karşılama kapasitesiyle UPS modülünün içinde kurulmuştur.

5.3.6 Paralel Yedekleme Modu (Sistem Genişletme)

Sistem kapasitesini, güvenirliğini veya ikisini de geliştirmek için doğrudan paralel bağlantıya çeşitli UPS modülü konulabilir ve her bir modüldeki paralel kontrol mantığı tüm UPS modüllerinin otomatik eş yük paylaşımını sağlar. Paralel sistem en fazla 4 UPS modülünden oluşabilir.

5.3.7 Frekans Dönüştürücü Modu

UPS 50Hz veya 60Hz sabit çıkış frekans sağlamak için frekans dönüştürücü modunda kurulabilir. Giriş frekans aralığı 40Hz~70Hz'dir. Bu modda statik baypas geçersizdir ve akü akü modunda çalıştırma gereksin veya gerekmesin isteğe bağlıdır.

5.3.8 Uyku Modu

Uyku modu etkinleştirildiğinde sistem etkinliğini maksimuma arttırmak için uykudaki modül sayısı yük güç kaynağı sağlama koşulu ile arttırılabilir. Bu modun sistemdeki IDs modülü için sınırları varır: 5 modül olduğunda modül IDs sırayla 1,2,3,4 ve 5'dir; 4 modül olduğund modül IDs sırayla 1,2,3 ve 4'tür; 3 modül olduğunda modül IDs sırayla 1,2 ve 3'tür; 2 modül olduğunda modül IDs sırayla 1 ve 2'dir.

5.4 Akü Yönetimi (Devreye Alma Esnasında Kurulum)

5.4.1 Genel İşlevler

1. Sabit akım hızlı şarj.

Şarj akımı ayarlanabilir.

2. Sabit voltaj artırma şarj.

Arttırma şarj voltajı akü tipine göre ayarlanabilir.

Vana kontrollü kurşun sit akü için, maksimum arttırılmış şarj voltajı 2.4V/pilden daha fazla olamaz.

3. Değişken şarj.

Değişken şarj voltajı akü tipine göre ayarlanabilir.

Vana kontrollü kurşun aist akü için, değişken şarj voltajı 2.2V/pilden 2.3V/pile kadar olabilir.

4. Değişken şarj sıcaklık dengelemesi (isteğe bağlı).

Sıcaklık dengeleme katsayısı akü tipine göre ayalanabilir.

5. EOD koruması.

Akü gerilimi EOD voltajına düştüğünde, akü dönüştürücü akünün aşırı şarj olmaması için otomatik olarak kapanır. EOD voltajı ayalanabilir: vana kontrollü kurşun asit akü için ayar aralığı 1.6V~1.75V/pildir; nikel-kadmiyum akü için aralık 1.9V~1.1V/pildir.

6. Akü düşük voltaj alarm zamanı.

Ayar aralığı: EOD öncesi 3-60 dakika, 5'er dakika gecikmeyle.

5.4.2 Gelişmiş İşlevler (Yazılım ile Devreye Alma Mühendisi Tarafından Kurulum)

Akü algılama bakımı

Akü her boşalma hacmi akünün 520'sine eşit olacak şekilde otomarik ve periodik olarak boşalır ve gerçek yük UPS nominal kapasitenin %20'sini aşmalıdır. Eğer yük %20'den az olursa otomatik boşalma bakımı gerçekleşmez. Otomatik boşalmanın zaman aralığı 30~360 gün arasında ayarlabanilir. Akünün kendi algılaması kapatılabilinir.

Şartlar: akü en az 5 saat şarj olmalı ve yük 20%~100% arasında olmalı.

Tetikleyiciler: LCD panelindeki akü bakım test komutlarını kullanan otomatik veya manuel olarak başlatılma. Akü otomatik algılama zaman aralığı: 30-360 gün (erteleme 60 gün).

5.5 Akü Koruması (Devreye Alma Mühendisi Tarafından Kurulum)

BLV alarmı

EOD'den önce, aki düşük voltaj alarmı açılmalı. Alarmdan sonra akü 3 dakikalık tam yük boşalım kapasitesine sahip olmalı. Bu zaman kullanıcı tarafından ayarlanabilir, ayar ayalığı 3-60 dakikadır.

EOD koruması

Eğer akü gerilimi EOD voltajına düşerse, akü dönüştürücü kapanır. EOD voltajı ayarlanabilir: vana kontrollü kurşun asit akü için ayar aralığı 1.6V~1.75V/pil; nikel-kadmiyum akü için aralık 1.9V~1.1V/pildir.

Akü devre kırıcı bağlantı kesilme alarmı

Bu alarm akü devre kırıcı bağlantısı kesildiğinde açılır.

Harici akü bir harici akü devre kırıcı ile UPS'e bağlanır. Bu devre kırıcı manuel olarak kapanır ve UPS kontrol devresinin kontrol anahtarı ile harekete geçirilir.

Bölüm 6 Çalıştırma Aşamaları

Bu bölüm UPS çalıştırma aşamalarını içerir.

Çalıştırma adımlarındaki tüm kontrol çalıştırma anahtarları ve LED ekranları için Bölüm 7 Çalıştırma ve kontrol ekran paneline bakınız. Çalıştırma esnasında beep alarmı çalabilir. Alarmı kapatmak için SESSİZ AÇIK/KAPALI düğmelerine basın.

UYARI: koruma kapağı arkasındaki tehlikeli ana ana şebeke kaynağı ve/beya akü gerilimi

Koruma kapağının arkasındaki sadece araç gereçle açılan parçalar kullanıcı tarafından çalıştırılmaz. Bu koruma kapaklarını sadece kalifiye bakım personeli açabilir.

6.1 Güç Kaynağı Anahtarı

UPS güç kaynağı anahtarı ön alt sağda bakım anahtarı sağlar (serigraf baskı: CB KORUMASI), tüm diler anahtar hareketleri DSP mantığı ile otomatik olarak el ile yapılır.

6.2 UPS Başlangıcı

UPS kurulumu tamamen bitirildiğinde, mühendis tarafından başarılı bir şekilde düzenlendiğinde ve harici güç anahtarı açıldığında UPS başlangıç aşamaları gerçekleştirilebilir.

6.2.1 Normal Mod için Başlangıç Aşamaları

Bu başlangıç aşamaları tamamen kapanma durumunda UPS'i başlatmak için uygulanır.

Çalıştırma aşamaları aşağıdaki gibidir:

1. Harici güç anahtarının bağlantısı kes. UPS kapısını aç, güç kablolarını yönet ve doğru güç aşama sırası olduğundan emin ol.

UPS başlangıç aşamalarını gerçekleştirirken UPS çıkış terminali yüklü olmalı.

Eğer yük UPS çıkış terminaline bağlanırsa, yük için güçkaynağının güvenli olup olmadığını kullanıcı ile doğrula. Eğer yük güç kaynağı için hazır değilse UPS çıkış terminalinde izole edilmelidir.

2. Harici güç anahtarını aç ve ana şebeke kaynağını yönet.

Bu sefer LCD başlangıç ekranını gösterir. Redresör başlar ve redresör yeşil yanar. Redresör normal çalışma durumuna girdikten 30s sonra redresör LED sabit yeşil durumda kalır. Başlamadan sonra baypas statik anahtar açılır. UPS analog LED durumları aşağıdaki gibidir:

LED	Durum
Redresör LED	Yeşil
Akü LED	Kapalı
baypas LED	Yeşil
Inverter LED	Kapalı
Yük LED	Yeşil
Durum LED	Sarı

3. 2s INVERTER AÇ düğmesine bas.

Inverter başlar, Inverer Led yeşil ışık yanar. Inverter normal çalışmaya başladıktan sonra UPS baypas güç durumundan inverter güç kaynak durumuna geçer, baypas LED kapanır ve inverter ve yük LED ışıkları açılır. UPS normal çalışır. UPS analog LED durumları aşağıdaki gibidir:

LED	Durum
Redresör LED	Yeşil
Akü LED	Kapalı
baypas LED	Kapalı
Inverter LED	Yeşil
Yük LED	Yeşil
Durum LED	Yeşil

6.2.2 Akü Modu için Başlangıç Çalıştırma Aşamaları

- 1. Akünün iyi bağlanıp bağlanmadığını kontrol et.
- 2. herhangi bir modülün ön panelindeki akü başlangıç butonuna bas (bkz. Şekil 6-1)

LCD başlangıç ekranını gösterir, akü LED yeşil yanar. Redresör normal çalışmaya başladıktan 30s sonra akü LED yanmayı bırakır ve sabit yeşil durumda durur.

3. 2s INVERTER AÇ butonuna basılı tut. UPS akü modunda çalışmaya başlar.

Press and hold the INVERTER ON key for 2s, the UPS will operate in battery mode.

Battery startup button

Sekil 6-1Akü başlangıç butonu durumlarının şeması

6.3 Çalıştırma Modları Geçiş Adımları

6.3.1 Normal Moddan Akü Moduna Geçiş

Harici güç anahtarını kapat ve ana şebeke kaynağını kes, UPS akü moduna girer. Eğer UPS'i normal moda döndürmek gerekirse birkaç dakika bekle ve harici güç kaynağını aç ve ana şebeke kaynağını yeniden başlat. 10s sonra redresör otomatik olarak başlar ve inverterin güç kaynağını yeniden başlat.

6.3.2 Normal Moddan baypas Moduna Geçiş

UPS'i baypas moduna almak için INVERTER KAPALI butonuna bas.

6.3.3 Baypas Modundan Normal Moda Geçiş

Baypas modunda INVERTER AÇ butonuna bas. Inverter normal çalışmaya başladıktan sonra UPS normal moda geçer.

6.3.4 Normal Moddan Bakım baypas Moduna Geçiş

Dikkat				
Çalıştırr	Çalıştırmayı değiştirmeden önce, lütfen ilk olarak LCD mesajını okuyun, baypasın normal çalışma durumunda olduğundan ve			
inverterin	inverterin baypas ile senkronize olduğundan emin olun. Eğer koşullar yerine getirilmezse yüke kısa zamanlı güç kaynalı kesintisi			
oluşabilir.				

1. çalıştırma kontrol panelinin sağındaki INVERTER AÇ butonuna basın ve en az 2s basılı tutun. Inverter Led kapanır ve LED durum (6) sarı görünür, beeper alarmı çalar, yük statik baypas durumuna geçer ve inverter kapanır.

2. UPS kapısını açın, bakım anahtarını KAPALI'dan AÇIK durumuna getirin. Yük için güç kaynağı manuel bakım baypası ile sağlanacaktır.

6.4 UPS Tamamen Kapatma Adımları

Eğer UPS'in tamamen kapatılması gerekirse 6.3.5 Normal moddan bakım baypas moduna alma'da belirtilen çalıştırma aşamalarına göre UPS'i normal çalışma durumundan baypas bakım moduna al.

Eğer UPS'in AC gücünden izole edilmesi gerekirse, harici güç giriş anahtarını kapat (eğer redresör ve baypas gücü bağımsız olarak sağlanıyorsa, her iki giriş anahtarını da kapat). Bkz. Şekil 6-2.

6.5 Direnç Güç Kaynağını Kesmeden UPS Kapatma Adımları

UPS'i tamamen kapattıktan sonra yükü bakım moduna al, eğer gerekirse bakım baypas gücü anahtarı çalıştırılabilir. UPS (bakım baypas dolabı da dahil olmak üzere) kalifiye personel tarafından kurulduktan sonra normal çalışmaya alıp bu adım gerçekleştirilebilir. Detaylar için bkz. Şekil 6-2.

Yükün Gücünü Kesmeden UPS'i Kapatma Adımları

Not	
Not: Bu adımı uygulamadan önce UPS'in harici bakım dolabı ile kurulduğundan emin olun.	

Aşağıdaki aşamalar yükün gücünü kesmeden UPS'i kapatmak için uygulanır.

1.6.3.4'de belirtilen 1-3. adımları uygulayın. Normal moddan bakım baypas moduna alın. 2.Bakım anahtarının AÇIK konumda olduğundan emin olun.

UPS kapandıktan ve yük bakım baypas moduna alındıktan sonra eğer gerekirse bakım baypas gücü çalıştırılabilir. UPS kalifiye personel tarafından (bakım bypass dolabı da dahil olmak üzere) kurulduktan sonra ve normal olarak çalışmaya başladıktan sonra bu adım gerçekleştirilebilir. Detaylar için bakınız: Şekil 6-2.

6.6 Acil Güç Kapatma (EPO) Çalıştırma Adımları

Acil Güç Kapatma (EPO) anahtarı acil koşullar altında(yangın, sel gibi) UPS'i kapatmak için kullanılır. Sistem redresör ve inverteri kapatur ve yük için güç kaynağını(inverter ve baypas çıkışları da dahil) acilen keser ve akü şarj olmayı veya boşalmayı bırakır.

Eğer UPS hala ana şebeke girişine devam ederse bu UPS kontrol devresinin hala açık olduğu anlamına gelir ancak UPS çıkışı kapalıdır. Eğer UPS ana şebeke kaynağının tamamen kesilmesi UPS'in gerekirse harici ana şebeke giriş anahtarı tamamen kapatılmalıdır.

6.7 Otomatik Başlangıç

Ana şebeke arızası oluştuğunda, akü sistemi ile yük sağlayanUPS akü boşalma (EOD)voltajının sonuna ulaşana kadar durmaz.

UPS aşağıdaki koşullarsağlandığında dış güç kaynağını yeniden başlatmak için otomatik olarak başlar.

- Ana şebeke kaynağı yeniden başladıktan sonra
- UPS otomatik başlangıca kurulduğunda
- Otomatik başlangıç gecikmesinden sonra (gecikme: 10 dakika) tomatik başlangıç gecikme esnasında ana şebekekaynağının bir başka güç kesintisinden kaynaklanan güç kapanma riskinden kaçınmak için aküyü şarj eder.
- Eğer UPS otomatik başlangıcı kurulmadıysa kullanıcı ARIZA GİDER butonuna basarak UPS'i manuel bir şekilde başlatabilir.

6.8 UPS Resetleme Adımları

UPS EPO (acil güç kesimi), inverter aşırısıcaklığı, aşırı yük, akü aşırı voltajı veya aktarım zamanı limitini aşması nedeniyle kapandığında (BYP: XFER SAYIM BLOĞU) ekrandaki alarm mesajına göre ilgili önlemleri alarak sorunları giderdikten sonra UPS kurtarma aşamaları ile UPS'in normal çalışmasını yeniden başlat.

Kullanıcı hatanın giderildiğini onayladıktan sonra aşağıdaki adımları gerçekleştirin:

1.Sistemi EPO durumundan çıkarmak için HATA GİDER butonuna basın.

2.Çalıştırma kontrol panelinin sağındaki INVERTER AÇIK butonuna basın ve 2s basılı tutun.

Not
Redresör yeniden başladığında,bupass yük için güç kaynağı sağlar. Redresör başladığında, redresör LED ışığı yanar. Redresör
normal çalışma moduna girdikten 30s sonra, redresör LED ışığı sabit olarak yeşil yanar.
Aşırı sıcaklık sinyalini yok olduktan 5 dakika içinde ve aşırı sıcaklık hatası ortadan kalktığında redresör otomatik olarak başlar.

EPO butonuna bastıktan sonra ve eğer UPS ana şebeke kaynağı kesildiyse UPS tamamen kapanır. Ana şebeke kaynağı yeniden başladığında UPS çıkışı başlatarak baypas modunda çalışmaya başlar.

Uyarı	
Eğer bakım düğmesi ON konumunda ise, UPS ana şebeke girişleri varsa, UPS'in çıkışı vardır.	

UPS modülünün güvenli bir şekilde voltajı boşaltıması 10 dakika alır, bu 10 dakika boyunca hiçbir bakım işlemi gerçekleştirilemez.

6.9 Güç Modülü Bakım Seçeneği Kılavuzu

(Aşağıdaki işlemleri sadece hizmet mühendisi gerçekleştirebilir.)

Master güç modeli bakım kılavuzu

Sistemin normal modda olduğunu ve baypasın normal çalıştığını varsayarak:

1.inverteri manuel olarak kapatın ve UPS'i baypas güç kaynağına getirin.

2.Bakımı yapılması veya onarılması gereken master güç modülünün hazır anahtarını çıkarın.

3. Master güç modelinin cıvatalarını çıkarın ve 2 dakika bekleyin, daha sonra bakım için master güç modülünü çıkartın.

Güvenlik için multi-metre ile DC veriyolu kondansatör voltajını ölçün ve 60V'dan az olduğuna emin olun.

4.Master güç modülü bakımı tamamlandıktan sonra, master güç modülünün adres numarasının çalışan diğer güç modüllerininkinden farklı ve 1~5 aralığında olup olmadığını doğrulayın. Eğer aynı ise farklıbir adres girin.

5. master güç modülünü takın(her bir modülün takılma zaman aralığı 10s'den fazladır), master güç modülünün hazır anahtarının çıkık durumda olduğundan emin olun ve güç modülün her iki tarafındaki cıvataları sıkın.

6. 2 dakika bekleyin ve master güç modülün hazır anahtarını takın, daha sonra master modülü otomatik olarak sistem çalışmasına katılamacaktır.

Baypas Güç Modülü Bakım Kılavuzu

baypas güç modülü için bakım çalışması akü modundayken gerçekleştirilmemelidir.

Sistemin normal modda olduğunu ve baypasın normal çalıştığını varsayarak:

1. İnverteri manuel olarak kapatın, UPS'i baypas güç kaynağına getirin, bakım baypas anahtarını açın, UPS'i bakım baypas güçkaynağına getirin.

2. EPO butonuna basın, akü akımının 0 olduğundan emin olun; akü devre kırıcıyı kapatın veya akü bağlantısını kesin.
 3.her bir master güç modülünün hazır anahtarını çıkarın ve master modülleri çıkarın.

4. Bakımı yapılması veya onarılması gereken baypas güç modüllerini çıkarın, 5 dakika bekleyin ve daha sonra baypas güç modülünün bakım çalışmasını yapın.

Güvenlik için multi-metre ile DC veriyolu kondansatör voltajını ölçün ve 60V'dan az olduğuna emin olun.

5. Baypas güç modülü bakım çalışmasını bitirdikten sonra baypas güç modüllerini takın. Baypasın normal güç sağladığını gösteren Baypas LED ışığı sabit yeşil yanana kadar 2 dakika bekleyin.

6. Master güç modülü bakımı tamamlandıktan sonra, master güç modülünün adres numarasının çalışan diğer güç modüllerininkinden farklı ve 1~5 aralığında olup olmadığını doğrulayın. Eğer aynı ise farklı bir adres girin.

7. Master güç modülünü takın (her bir modülün tam zaman aralığı 10s'den fazladır) master güç modülünün hazır anahtarının çıkık durumda olduğundan emin olun ve güç modülün her iki tarafındaki cıvataları sıkın.

8. Master güç modülünün hazır anahtarını takın (her bir modülün takım zaman aralığı 10s'dev fazladır) her bir modülü hazır duruma getirin.

9.Bakım baypas anahtarını kapatın, ve sistem anahtarlarını baypas güç kaynağına getirin. Inverteri manuel olarak açın ve UPS'i inverter güç kaynağına getirin.

6.10 Dil Seçimi

LCD menü ve veri desteği Çince, Hollandaca, İngilizce, Fransızca, Almanca, İtalyanca, Japonca, Lehçe, Portekizce, Rusça, İspanyolca ve İsveççe olmak üzere 12 dilde gösterilebilir.

Aşağıdaki adımlara göre istediğiniz dili seçin:

1. AC ÇIKTI menüsünün altındaki MENÜ DİLİ'ni seçmek için F3 veya F4'e basın (sol veya sağa kaydırın)

2. İmleci ekranın veri pencerine taşımak için F5(onayla)'e basın.

3. İstediğiniz dili seçmek için F3 veya F4'e (yukarı veya aşağıya kaydırın) basın.

4. Onaylamak için F5(onayla)'e basın.

5. AC ÇIKIŞ menüsüne dönmek için ard arda F2(çıkış)'ye basın. LCD'deki tüm metinlerin seçilen dile dönmüş olması gerekir.

6.11 Güncel Tarih ve Saati Değiştirme

Sistem tarih ve saatini değiştirmek için aşağıdaki adımları uygulayın:

1. AC ÇIKIŞ menüsünün altındaki FONKSİYON AYARLARI'nı seçmek için F3 veya F4'e basın (sol veya sağa kaydırın).

2. İmleci ekranın bilgi penceresine getirmek için F5(onayla)'e basın.

3. TARİH VE SAAT AYARLARI'nı seçmek için F3 veya F4'e basın (aşağı veya yukarı kaydırın).

4. İmleci tarih ve zaman ekran çizgisine getirin, F5(onayla)'e basın.

5.Güncel tarih ve saati girmek için F3 veya F4'e basın (aşağı veya yukarı kaydırın).

6.Onaylamak için F5(onayla)'e basın, AC ÇIKIŞ menüsüne dönmek için F2(çıkış)'ye basın.

6.12 Giriş Şifresi

Sistem UPS çalışırma kontrolü koruması için bir şifre sağlar. Varsayılan şifre "12345"dir. Şifre doğrulamayı geçtikten sonra UPS ve akü test çalıştırmaları gerçekleştirilebilir.

Bölüm 7 Operatör Kontrol Ve Ekran Paneli

Bu bölüm detaylı olarak UPS çalışma kontrol ve gösterge panelinin her bir parçasının fonksiyon ve kullanımını tanıdır ve LCD ekran tipi, detaylı menü bilgisi, hızlı ekran mesajı ve UPS alarm listesi de dahil olmak üzere LCD ekran bilgilerini sunar.

7.1 Kısa Tanıtım

UPS çalışma kontrol ve gösterge paneli ön kapıdadır. Çalışma kontrol ve gösterge paneli ile UPS çalışmaları kontrol edilebilir ve tüm UPS parametreleri, UPS ve akü durumu ve alarm mesajları alınabilir. Şekil 7-1'de gösterildiği gibi çalışma kontrol ve gösterge paneli fonksiyonlarına göre üç bölüme ayrılmıştır: simülasyon akım şeması, LED ekranı ve menü anaharı ve çalışma kontrol anahtarı.

Sekil 7-1 Operator control and display panel

Tablo 7-1 Operator control and display panel component description

No.	Fonksiyon	Buton	Fonksiyon
1	Redresör LED	EPOEPO	Acil güç KAPALI (EPO) Anahtarı
2	Akü LED	INVERTER ON	Inverter başlangıç anahtarı
3	baypas LED	INVERTER OFF	Inverter kapatma anahtarı
4	Inverter LED	FAULT CLEAR	Arıza resetleme anahtarı
5	Yük LED	SILENCE ON/OFF	Alarm sessiz anahtarı
6	Durum LED	F1~F5	LCD menü anahtarı
7	Alarm sesi		
8	EPO buton koruma kapağı		

7.1.1 LED

UPS çalışma yolu ve mevcut durumunu göstermek için Simülasyon Akım Şemasında LED vardır. Her LED durumunun tanımı Tablo 7-2'de gösterilmiştir.

LED	Durum	Anlamı		
Redresör LED	Sabit yeşil	Redresör normal çalışıyor		
	Yanan yeşil	Redresör çalışmıyor ama ana şebeke normal		
	Sabit kırmızı	Redresör arızası		
	kapalı	Redresör çalışmıyor ana şebeke normal değil		
	Sabit yeşil	Yük akü ile güçlenmil		
	Yanan yeşil	EOD ön alarmı		
Akü LED	Sabit kırmızı	Akü anormal (akü hatası, geçersiz akü veya ters bağlanan akü gibi) veya akü dönüştürücü normal değil (arıza, aşırı yük veya aşırısıcaklık gibi)		
	Kapalı	Akü ve akü dönüştürücü normal; akü şarjı devam ediyor		
	Sabit yeşil	Yük baypas ile güçlenmiş		
baypas LED	Sabit kırmızı	baypas gücü normal değil ve normal aralığı aşmış veya statik baypas anahtarı hatalı		
	kapalı	baypas normal		
	Sabit yeşil	Yük inverter ile güçlenmiş		
Inverter LED	Yanan yeşil	İnverer aç, başlat ve senkronize et		
	Sabit kırmızı	Inverter hatası		
	kapalı	İnverter çalışmıyor		
	Sabit yeşil	UPS çıkış ile normal		
Yük LED	Sabit kırmızı	UPS çıkışı var ancak aşırı yüklenmiş		
	kapalı	UPS çıkışı yok		
	Sabit yeşil	Normal çalışma		
Durum LED	Sabit sarı	UPS alarmı (örn. AC arızası)		
	Sabit kırmızı	UPS arızası (örn. faz veya donanım arızası))		

Tablo	7-21 FD	durum	tanımı
rubio	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	aurum	tainin

7.1.2 Alarm Sesi(Beeper)

Γ

UPS çalışırken tabloda 7-3'de gösterildiği gibi üç farklı alarm tipi vardır.

Tablo 7-3Alarm sesi tanımı		
Alarm sesi	Anlamı	
Kısa tek bip alarmı	Fonksiyon çalışım anaharına basıldığında alarm çalar	
Her 1saatte bipleme	UPS oluşturduğunda alarm çalar (örn. AC hatası)	
Sürekli bipleme	UPS hatası oluştuğunda alarm çalar (örn. faz veya donanım hatası)	

7.1.3 Çalışma Kontrol Anahtarı

Çalışma kontrol ve gösterge ekranında beş tane çalışma kontrol anahtarı bulunur. Çalışma kontrol anahtarlarının tanımı için lütfen Tavlo 7-4' bakınız.

Tablo 7-4Çalışma	kontrol	anahtarı	fonksiyon	tanımı
3 3				

Çalışma kontrol anahtarı	Fonksiyon tanımı	
Acil güç KAPALI (EPO) Anahtarı	Redresör, inveter, statik baypas ve aküyü kapatma ve yük gücünü kesme için kullanılır.	
Inverter başlangıç anahtarı	İnverteri başlatmak için kullanılır.	
Inverter kapatma anahtarı	İnverteri kapatmak için kullanılır.	
Arıza resetleme anahtarı	UPS fonksiyonlarını yeniden başlatma (hatanın ortadan kaldırılması koşuluyla)	
Alarm sessiz anahtarı	Alarm sesi anahtara basarak sessize alınabilir ve beeper anahtara tekrar basılarak yeniden başlatılabilir.	

7.1.4 LCD ve Menü Anahtarı

LCD screen and five menu keys (F1, F2, F3, F4, F5) are provided on the operator control and display panel. For the function description of each menu key, please refer to Table 7-5.

Key	F1	F2	F3	F4	F5
Function 1	ි HOME	ESC	Left	☐ → Right	бк
Function 2			↓ Up	Down	

Tablo 7-5Menü tuş fonksiyon tanımı

LCD görüntü arayüzü kullanıcı dostudur ve 320 × 240 latis grafik ekran sunar. LCD görüntü arayüzü ve kullanıcı dostu menü sürücü işletim sistemi ile kullanıcı UPS girişi, çıkışı, yükü ve akü parametrelerini kolaylıkla görebilir ve UPS sisteminin mevcut durumu ve alarm bilgisini alabilir ve ilgili fonksiyon ayarlarını gerçekleştirebilir ve çalışamaları kontrol edebilir. LCD arıza tanısı için güvenilir bir temel sağlayarak müşteriler için eski alarm mesajlarını 1024 adete kadar sunabilir.

7.2 LCD Ekran Tipleri

7.2.1 Başlangıç Ekranı

UPS başladığında kendi algılaması başlar ve şekil 7-2'de göserildiği gibi başlangıç ekranı çıkar ve 15 saniye kalır.

Sekil 7-2 Başlangıç ekranı

7.2.2 Ana Ekran

UPS başlangıç ekranı kendi algılamasını bitirdikten sonra şekil 7-3'de gösterildiği gibi ana ekran çıkar. Ana ekran 4 ayrı menüye bölünmüştür: sistem bilgi penceresi, menü penceresi, bilgi penceresi ve kılavye açıklama penceresi.

Single UP	S 090kT	VA 16.7	ur 🙇 🖻	UPS system window
	L1-N/L2	L2-N/L3	L3-N/L1	
L-N voltage(V)	120	129	1.29	
L-N current(A)	20.5	2 0 <i>5</i>	20.5	UPS data window
Frequency(HE)	301	501	504	
L-L voltage(V)	208	208	208	
Power factor(V)	0.99	099	0.99	
	OutPut			
√ ≪ √		lline		UPSmenu window
企	¢	⇔		Keypad explanation windov
) F3	14	a	10.1

Sekil 7-3 Main screen

F1~F5 tuşlarının üstündeki mevcut ekran simgesi her bir tuşun anlamını açıklar. Ana ekrandaki herhangi bir menüde "AC giriş" menüsüne dönmek için F1'e basın, Şekil 7-4 güç modülü seçiminde gösterilen ekrana girmek için eş zamanlı olarak F3 ve F4' e basın.

Sekil 7-4 Güç seçim modülü

7.2.3 Standart Ekran

Sistemin çalışması esnasında iki dakika içinde hiçbir alarm oluşmaz, daha sonra şekil 7-5'de gösterildiği gibi varsayılan ekran ortaya çıkar. Ekran arka ışığı kısa zamanda kapanır. Herhangi bir tuşa (F1~F5) basın bu ekran yeniden çıkacaktır.

Sekil 7-5 Varsayılan ekran

7.3 Detaylı Menü Açıklaması

Ana LCD ekran, Şekil 7-3'de detaylı olarak açıklanmıştır.

Sistem bilgi ekranı

Mevcut zamanı, UPS adını ve durumu, tekno çalışmayı gösterek sistem bilgi ekranı bu pencerenin bilgileri için gereklidir. Detaylı bilgi Tablo 7-6'da gösterilmiştir.

Tablo 7-6 Sistem bilgi penceresindeki maddelerin açıklaması

Madde	Açıklama
UPS	UPS serilerinin isimleri
12:30:36	Mevcut zaman (format: 24-saat, saat: dakika:saniye)
Çevrim içi modül/paralel sistem (1#)	Çevrim içi modül veya paralel modül olarak yapılandırıldı
ष्ठे/ मे	Alarm sessiz modu 🛱 : Sessiz; 📮 : sessiz değil

Menü penceresi ve bilgi penceresi

Menü penceresi bilgi penceresinin menü isimlerini gösterir. Bilgi penceresi menü penceresindeki seçilmş menünün ilgli maddelerini gösterir. İlgili UPS parametreleri görülebilinir ve ilgili fonksiyon menü penceresive bilgi penceresi ile kurulabilir. Detaylar için bkz. Tablo 7-7.

Tablo 7-7 Menü penceresi ve bilgi penceresindeki maddelerin açıklaması

İsim	Madde	Açıklama
	Faz voltaj (V)	Faz voltaj
	Faz akım (A)	Faz akım
Ana devre girişi	Frekans (Hz)	Giriş frekansı
	Doğrusal voltaj (V)	Hat voltajı
	Güç fakörü	Güç faktörü
Dönüştürücü girişi	Faz voltaj (V)	Faz voltaj
	Line voltage (V)	Hat voltajı
baypas girişi	Doğrusal voltaj (V)	Faz voltaj
	Frekans (Hz)	baypas frekansı
	Hat voltajı (V)	Line voltage

İsim	Madde	Açıklama
	Faz voltaj (V)	Faz voltaj
AC çıkışı	Faz akım (A)	Faz akım
	Frekans (Hz)	Çıkış Frekansı
	Hat voltajı (V)	Hat voltajı
	Güç faktörü	Güç faktörü
Dönüstürücü cıkısı	Faz voltaj (V)	Faz voltaj
Donaştarada şirtişi	Hat voltajı (V)	Hat voltajı
	Görünür Güç (kVA)	Sout: görünür güç
	Aktif güç (kW)	Pout: aktif güç
Bu modülün yükü	İnaktif güç (kVAR)	Qout: inaktif güç
	Yük yüzdesi (%)	Yük (UPS nominal yükün yüzdesi)
	Zirve oran	Çıkış akımı zirve oranı
	Görünür Güç (kVA)	Sout: görünür güç
Develop	Aktif guç (kW)	Pout: aktif guç
Paralel yuk	Inaktif guç (kVAR)	Qout: inaktif guç
	Paralel verisi olmayan	UPS tek bir modul olarak kuruldugunda sadece bu modulun yuku mevcuttur ve
		Sistem yuku yoktur.
		Aku veri yolu voltaji
	Kalan zaman (Min.)	Kalan aku yodaklama zamani
Akü bilgisi	Akü kapasitesi (%)	Veni aku yeuekielile zamani
	Hızlı sarida akü	
	Tampon sarida akü	Akü tampon sari modunda
	Akü bağlantısız	Akü bağlantısı keşildi
		Mevcut alarmı gösterir. UPS calısma kontrol ve gösterge panelindeki LCD ile
Mevcut kayıt	(Mevcut alarm)	alarm listesinin gösterimi, bkz tablo 7-9.
,	· · · · ·	o
E alci lea ut	(Falsi alarma)	Eski alarmları göster. UPS çalışma kontrol ve gösterge panelindeki LCD ile
ESKI KAYIL	(ESKI alann)	alarm listesinin gösterimi, bkz tablo 7-9.
Menü dili	(Dil seçeneği)	12 LCD dil seçeneği
	LCD kontrast ayarı	LCD kontrastını ayarla
	Tarih biçimi ayarı	Dört biçim seçeneği: ay/gün/yıl, gün/ay/yıl, ay/gün/yıl ve yıl/ay/yıl
	Tarih saat ayarı	Tarih ve saati ayarlama
	Seri port 1 baud hızı	Intellislot akıllı kart arayüzü bağlantı baud hızı ayarı 1
	ayarı	
	Seri port 2 baud hızı	Intellislot akıllı kart arayüzü bağlantı baud hızı ayarı 2
	ayarı	· · · ·
	Seri port 3 baud hizi	Intellislot akıllı kart arayüzü bağlantı baud hızı ayarı 3
	ayarı	
Fonksiyon ayarı	Dešlanti matat averi	RS465 baylanti metoluna uyar
	Gori arama zaman	Exer intelliclet akıllı kart arayüzü 1 hağlantı metetu Medem ice geri arama alarm
	hatasi avari	zamanını buradan kurun
	Setting of failure	Făer intellislot akıllı kart aravüzü 1 bağlantı metotu Modem ise geri arama
	call-back times 1	alarmının ilk numarasını buradan avarlavın.
	Setting of failure	Eğer intellislot akıllı kart arayüzü 1 bağlantı metotu Modem ise geri arama
	call-back times 2	alarmının ikinci numarasını buradan ayarlayın.
	Setting of failure	Eğer intellislot akıllı kart arayüzü 1 bağlantı metotu Modem ise geri arama
	call-back times3	alarmının üçüncü numarasını buradan ayarlayın.
	Şifre giriş ayarı	Kullanıcı giriş şifresini değiştirebilir.
	Akü bakım testi	Akü bakım testi akü kapasitesinin verilerini almak için aküyü boşaltır.
Test talimati	And banin testi	Yük %20- %80 aralığında olmalıdır.
(baslatma/durdurma	Akü kapasite testi	Akü bakım testi akü kapasitesinin verilerini almak için aküyü boşaltır.
/akü/sistem testi/		Yük %20- %80 aralığında olmalıdır.
hızlı şarj)		UPS otomatik testidir.
	Sistem testi	nullarılıcı bu tonksiyonu başlatılıktan beş saniye sonra ekran sistemin sonuçlarını
		900.011
1	1	

İsim	Madde	Açıklama
	Durdurma testi	Akü bakım testi, akü kapasite testi ve sistem tesinin manuel olarak durdurulması.
	Hızlı şarj	Akü şarjını manuel olarak hızlandırma
	Hızlı şarjı durdurma	Akü hızlı şarjını manuel olarak durdurma
Sistem verisvonu	UPS sürümü	UPS inverter, redresör ve izleme yazılımı verisyonları sağlanır.
Sistem vensyonu	UPS modeli	UPS model bilgisi sağlanır, örneğin: 400V-60Hz

Klavye açıklama penceresi

Mevcut ekrandaki menü anahtarlarının ilgili fonksiyonları (F1~F5) sembollerle açıklanır.

7.4 Hızlı Ekran Mesajı

During the operation of the system, when the system intends to warn the user of some system conditions, or the user is required to confirm certain order or perform other operations, the prompt window will appear, as shown in Table 7-8.

Tablo 7-8 Hızlı Ekran ve anlamı

Hızlı Ekran	Açıklama
baypas ve inverter arasındaki aktarım ve kısa zamanlı güç kesimi oluşacak, lütfen onaylayın veya iptal edin.	İnverter ve baypas eş zamanlı değil; baypas ve inverter arasındaki yük aktarımı kısa zamanlı güç kesimine yol açar.
Yük modül kapasitesinden büyük, aktarım bitirilemiyor.	Paralel sistemin baypasdan inverter çıkışa (güç kapalı) geçmesi için toplam yük modül kapasitesinden az olmalı.
Anormal baypas, kapanmadan kaynaklı güç kesimi, lütfen onaylayın veya iptal edin.	baypas anormalken inverterin kapanması UPS'den çıkış olmamasına yol açar. Kullanıcının onaylaması veya iptal etmesini bekleyin.
Aşırı büyük yük, kapanmadan kaynaklı aşırı yük, lütfen onaylayın veya iptal edin.	İnverterin kapanması paralel sistemin diğer inverlerinin aşırı yüklenmesine yol açar. Kullanıcının onaylaması veya iptal etmesini bekleyin.
Yetersiz başlangıç kapasitesi, mevcut yükler alınamıyor.	Paralel sistemin başlayan inverteri mevcut baypas yükünü taşıyamaz. Kullanıcının daha fazla UPS başlatması gerekli.
Akü kapasitesi tamamen boşalacak, lütfen onaylayın veya iptal edin.	Eğer kullanıcı akü bakım testini seçerse, UPS kapanana kadar akü şarjı boşalır. Hızlı ekran kullanıcının onayı için ortaya çıkar. Akü boşalması iptal edilerek sonlandırılabilir ve inverter ile ana şebeke kaynağı yeniden başlatılır.
Sistem kendi algılaması tamamlandı, her şey tamam.	Hiçbir işlem gerektirmez.
Sistem kendi algılaması tamamlandı, lütfen mevcut alarmı kontrol edin	Mevcut kayır ekran bilgisini kontrol edin.
Giriş şifresini girin	Akü veya UPS testi için giriş şifresinin girilmesi gerekmektedir. (varsayılan şifre 12345'dir)
Akü kendi algılanması için koşullar sağlanmadı lütfen akü ve yük koşullarını kontrol edin.	Akü kendi algılaması için koşullar sağlanamadı. Kullanıcı akünün hızlı şarj durumunda olup olmadığını ve yük kapasitesinin %20'den büyük olup olmadığını kontrol etmelidir.
Hızlı şarj için koşullar sağlanmadı lütfen akü durumunu kontrol edin.	Koşullar sağlanamadığında (akü ulaşılmaz ve şarj hatası gibi) kullanıcı hızlı şarjı seçerse bu mesaj çıkar.

7.5 Alarm Listesi

Aşağıdaki tablo Tablo 7-7'de belirtilen "Mevcut Kayıtlar" ve "Eski Kayıtlar" ile gösterilen tüm UPS alarm mesajlarının listesini sunmaktadır.

Tablo 7-9	Alarm listesi
10010100	/ 11/11/11/11/01/00/

Alarm	Tanımı	
Inverter bağlantı hatası	Dahili izleme paneli ve inverter arasında bağlantı hatası	
Redresör bağlantı hatası	Dahili izleme paneli ve redresör arasında bağlantı hatası	
	Paralel sistemdeki her bir modülün inverter bağlantı hatası	
Paralel haŭlanti hatasi	1.Paralel sistemdeki UPS modüllerinin açılıp açılmadığını kontrol edin, evet ise bu UPS sistemlerini	
Falalei Dayialili Halasi	açın ve alarmların yok olup olmadığını kontrol edin.	
	2. HATA GİDER butonuna basın.	
Akü aşırı sıcaklığı	Akü sıcaklığı çok yüksek. Akü sıcaklığı ve havalandırmasını kontrol edin.	
Ortam aşırı sıcaklığı	Ortam sıcaklığı çok yüksek. UPS oda havalandırmasını kontrol edin.	
Akü ömrünün sonu	Akü ömrünü doldurdu(yedek)	
Akü yenilenmesi gerekli	Akü testi geçemedi ve bu nedenle yenilenmeli.	
	BLV ön alarmı akü gerilimi voltaj boşalımının sonuna ulaşmadan önce ortaya çıkar. Akü kapasitesi ön	
BLV ön alarmı	alarmdan sonra 3 dakikalık tam yük boşalımına izin veriri. Zaman 3 dakikadan 60 dakikaya kadar	
	kullanıcı tarafından ayarlanabilir. Yükleri zamanında kapatın.	
FOD	Akü gerilimi voltaj boşalımının sonuna ulaştığında inverter kapanır. Ana şebekeyi bir an önce yeniden	
EOD	başlatmak için ana şebekesinin kapalı durumunu kontrol edin.	
Anormal and dours voltai	Ana şebeke voltajı normal aralığı aşar ve redresörnun kapanmasına neden olur. Redresör giriş faz	
Anormai ana devre voltaji	voltajını kontrol edin.	
Ana davra dügük valtai	Düşük voltaj ana şebeke çalışmada değer kaybına neden olur. Redresör giriş hattı voltajını kontrol	
Ana devre duşuk voltaj	edin.	
Anormal ana devre	Ana şebeke frekansı normal aralığı aşar ve redresörnun kapanmasına neden olur. Giriş voltajı ve	
frekansı	redresörnun frekansını kontrol edin.	
Redresör hatası	Redresörda arıza oluşur ve kapanır, akü boşalır.	
Dedreeër eerr ereektiër	Soğutucunun aşırı yüksek sıcaklığı redresörnun kapanmasına yol açar ve UPS otomatik olarak	
Redresor aşırı sıcaklığı	yeniden başlatılır. Çevre ve havalandırmayı kontrol edin.	
akü kontaktör hatası Akü kontaktörü ve anahtarı kontrol sinyaline tepki vermez.		
Akü şarj hatası	Akü şarj voltajı limiti aşar.	
Yardımcı güç 1 kapalı	UPS anormal veya kontrol gücü olmadan çalışır.	
Ana devre ters fazı	AC giriş ters fazı	
Redresör aşırı akımı	Redresör aşırı akımı	
Yumuşak marş hatası	Düşük DC veriyolu voltajı yüzünden redresör başlatılamaz.	
	baypas voltaj genliği veya frekansı normal aralığı aştığında inverter yazılım programı bu alarmı	
	tetikler. Genlik ayar değeri ± 10% nominal değer olarak sabitlenir.	
hovnog conkraniza	baypas voltajı normale döndüğünde bu alarm otomatik olarak kapanır.	
odilmomia	1.İlk olarak paneldeki baypas voltajı ve frekansının ayar aralığnda olduğunu kontrol edin. Not:	
edimerniş	nominal voltaj ve frekans "çıkış voltajı" ve "çıkış frekansı" ile gösterilir.	
	2. Eğer voltaj anormalse, gerçek baypas voltajını ve frekansını ölçün. Eğer anormallik varsa harici	
	güç kaynağını kontrol edin.	
	baypas voltaj genliği veya frekansı çok yüksek veya düşük olduğunda inverter yazılım programı bu	
baypas koruma dışında	alarmı tetikler. Genlik ayar değeri ± 10% olarak sabitlenir. baypas voltajı normale döndüğünde	
	alarm otomatik olarak kapanır.	
	İlk olarak " baypas devre kırıcı bağlantısı kesildi", " baypas ters fazı" ve "giriş sıfır voltaj hatası" gibi	
	ilişkili bir alarm olup olmadığını kontrol edin. Eğer varsa ilk olarak ilgili alarmı kaldırın. Daha sonra	
	paneldeki baypas voltajı ve frekansının ayar aralığında olup olmadığını kontrol edin; Not:nominal	
	voltaj ve frekans "çıkış voltaj sınıf ayarı" ve "çıkış frekans sınıf ayarı" ile gösterilir. Eğer voltaj anormal	
	görünüyorsa, harici güç kaynağını kontrol edin. Eğer bu alarm sık sık oluşuyorsa, baypas üst limit	
	ayarı kullanıcının görüşüne göre yapılandırma yazılımı kullanılarak yaklaşık olarak arttırılabilir.	

Alarm	Tanımı
	İnverter ve baypas faz oltajı arasındaki faz açı farkı 6 dereceyi aştığında, bu alarm inverter yazılım
	programı tarafından tetiklenir. Genlik ayar değeri ± 10% nominal değere sabitlenir. Alarm koşulları
	ortadan kalktığında bu alarm kapanır.
Asenkron Inverter	1.İlk olarak " baypas senkron dışında" veya " baypas koruma dışında" alarmları olup olmadığını
	kontrol edin. Varsa önce bu alarmı kaldırın.
	2. baypas voltaj dalga yapısının normal olup olmadığını kontrol edin. Eğer ciddi oranda
	bozulmuşsa, kullanıcı bunu onaylamalı ve çözüm bulmalı.
Inverter hatası	İnverter çıkış voltajı limiti aştığında yük baypasa geçer.
	Eğer inverter soğutucu sıcaklığı çok yüksekse, inverter çalışmasını durdurun. Bu alarm inverter köprü
	soğutucudaki termostatın sıcaklık izleme sinyali ile tetiklenir. Aşırı sıcaklık sinyali söndükten ve 5 dk
	ertelemeden sonra UPS otomatik olarak yenilenir.
	Eğer aşırı sıcaklık varsa;
İnverter aşırı sıcaklık	1.ortam sıcaklığının çok yüksek olup olmadığını
	2.kanalın kapanıp kapanmadığını
	3.fan arızası olup olmadığını
	4.inverter aşırı zaman aşırı yük olup olmadığını
	Kontrol edin.
Fan hatası	En az bir soğutucu fan arızası
lessentes the sectors	İnverterin yanındaki en az bir statik anahtar bağlantısı kesilmiş veya kısa devre yapmış. Hata güç
Inverter thyrsitor natasi	kesilene kadar bloke olur.
hourses the welter better	baypas yanındaki en az bir statik anahtar bağlantısı kesilmiş veya kısa devre yapmış. Hata güç
baypas thyrsitor natasi	kesilene kadar bloke olur.
Geçersiz çalıştırma	Yanlış çalıştırma
Çıkış sigortası hatası	En az bir inverter Çıkış sigortası hatası. İnverter kapanır ve yük baypas moduna geçer.
Yardımcı güc 2 kapalı	UPS anormal veva kontrol gücü eksikliği olmadan calısıvor.
	Yük nominal değerin %105'ini astığında alarm calar. Asaırı yük durumu ortadan kalktığında alarm
	otomatik olarak kapanır.
Tek modülün cıkıs asırı	LVD panelinde gösterilen vük vüzdesini kontrol edin, hangi fazın asarı vüklendiğini belirlevin ve
vükü	alarmın doğru olup olmadığını kontrol edin.
,	Eğer alarm doğru ise, gösterilen değerin doğruluğunu onavlamak icin gercek cıktı akımını ölcün.
	Önemli olmavan vükün bağlantısını kesin. Paralel sistemde eğer yük dengesiz ise alarm calar.
	UPS paralel sistemin toplam viikii nominal UPS parametresinin %105'ini astiğinda alarm çalar. Asırı
	vük ortadan kalktığında alarm otomatik olarak kapanır. I CD panelde gösterilen yükün yüzdesini
Paralel sistem asırı vükü	kontrol edin, hangi fazin asırı yük olduğunu belirlevin ve alarmın doğru olup olmadığını kontrol edin.
r alaioi olotoin agin faila	Făer alarm doăru ise, gösterilen deăerin doăruluăunu onavlamak icin gercek cikti akimini ölcün.
	Önemli olmavan vükün bağlantısını kesin. Paralel sistemde eğer yük dengesiz ise alarm calar.
	LIPS asırı yüklenir ve izin verilen asırı yük azamanı asılır
	Not:
	1 Maksimum yük fazı asırı yük asırı zamanı gösterir
	2 Yük nominal değeri astığında "tek modül asırı yük"alarmı çalar
Tek modül asırı yük asırı	2. ruk nominia değen aşlığında tek modul aşırı yak alarmı çalar. 3 izin verilen aşırı yük aşıldığında inverter yanındaki statik anahtar hağlantışı keşilir ve yük
zaman	baynasa decer: inverter kananır ve 10s sonra başlar
Zumun	4 Viik %95'in altına düstükten 5 dakika sonra sistem inverter güç kavnağına geçer. CD panelde
	asterilen vükün vüzdesini kontrol edin, ve alarmın doğru olun olmadığını kontrol edin. Eğer I CD
	ekranı asırı yük olduğunu gösteriyorsa, gerçek yükü kontrol edin ve UPS'in alarmdan önce asırı
	vüklenin yüklenmediğini onaylayın
Anormal baypas	
kananmasi	Hem baypas hem de inverter voltajı anormal. Yük güç kaynağı bağlantısı kesilmiş.
Inverter asırı akımı	İnverter darba genielik modülasıyonu modülünde asırı akım yar
	hoveren veltei terz phosola normel certleri. Ecz P. Ecz A ile kwoolondrăinde 120 derece geoikir. Ecz
Baypac tore fazi	C faz B ilo kuyaslandığında 120 derece gecikir. LIPS baynas günü fazının doğru olun olmadığını
Daypas lers lazi	c faz b lie kiyasiandığında fzü delece gecikli. OFS baypas gucu fazinin düğrü olup olinadığını
Vük ooku nodeniule	Kulturi editi. Deglise duzetiti. Välk aaku havaaa kavnaävna aistami aktavir va LIDC atamatik alavak vanidan haalar. Välk invartar
havnasa coois	i un şonu baypas naynayına sistemi aktarır, ve ors otomatik olarak yeniden başlar. YUK inverter
uayhasa yeçiş	yunie şunu dzalıllılar içili ler ler Daşidillil. Eğer opyr yük aktorim zomonu 1 opet içinde oyur değerini operat yük heyrete tür methyakı kelm
Aktarım zaman kısıtlaması	Eyer aşırı yuk aktarını zamanı i saat içinde ayar degerini aşarsa, yuk baypas guç modunda kalır.
Develot eleteration al sur	oro bil saal içinde olomalik olarak yeniden başıar ve inverter güç kaynağı moduna geçer.
Paralel Sistemin akim	Paralel sistemdeki UPS modülleri yükleri eşit olarak paylaşmaz.
payıaşım natası	
Anormal veri yolu	Anormal DC veriyolu voltajı inverter kapanmasına neden yolur. Yük baypasa geçer.
nedeniyie kapanma	

UPS Modülü ve Paralel Sistem 30kVA \sim 150kVA Kullanıcı Kılavuzu

Alarm	Тапіті
baypasa geçme için	Paralel sistemin tüm modülleri aynı anda baypas güç kaynağına geçer. baypas kaynağına geçen
gerekli komşu birim	UPS modülü LCD ekranı alarm mesajını gösterir.
Paralel panel hatası	Paralel panel hatası. Sistemin baypasa geçmesini sağlar.
	Aşırı yüksek DC veriyolu voltajı redresör, inverter ve akü dönüşütürücüsünün kapanmasına yol açar.
DC veriyolu aşırı voltajı	Doğtultucuda arıza olup olmadığını kontrol edin. Eğer yoksa aşırı yük olup olmadığını kontrol edin.
	Arıza giderildikten sonra inverteri yeniden başlatın.
Paralel kablo bağlantı	Paralel sistemde paralel kablo yanlış bağlanmış.ARIZA GİDER butonuna basark arızayı resetle ve
hatası	daha sonra INVERTER AÇIK butonuna basarak inverteri yeniden başlat.
baypas aşırı akım hatası	baypas akımı nominal değerin %135'ini aşar. UPS alarmı oluşturur fakar diğer işlemleri oluşturmaz.
	UPS'in çift veri yolu yapılandırma sisteminde LBS master veya slave olarak çalışmasını sağlayan
LBS aktive edildi	LBS ayarı etkin.
Ayar depolama hatası	Eski kayıtlar saklandı (yedekli).
Giriş sıfır kaybı hatası	DC giriş ana şebeke nötr kablosu algılandı.
Protokol sürüm çakışması	İzleme paneli ve DSP panelinin protokol sürümleri uygun değil.
Akü topraklama hatası	Akü topraklama hatası kuru kontak oalarmı olusturur.
Manuel baslangic	Ön panel butonundan inverteri manuel olarak baslat.
Manuel kapatma	Ön panel butonundan inverteri manuel olarak kapat.
FPO	Paneldeki EPO butonuna bas ve harici EPO talimaturu al
Kesintisiz aktarım onavı	Kullanıcı talimata göre "Onavla" hutonuna başarak yükü kapatabilir ve baynasa geçirebilir
Kesintisiz aktarım intal	
etme	Kullanıcı talimata göre "İptal" butonuna basarak yükü kapatabilir ve baypasa geçirebilir.
Tek modül risk kapama	
onavi	Kullanıcı talimata göre "Onayla" butonuna basarak paralel sistemin tek modülünü kapatabilir.
Paralel risk kapama onavi	Kullanıcı talimata göre "Onavla" butonuna başarak paralel sistemi kapatabilir.
Hata giderme	Paneldeki "HATA GİDER" butonuna başı
Alarm susturma	Paneldeki "SESSIZ ACIK/KAPALI" butonuna bas
	İnverter manuel olarak başlatılamaz. Bu gecersiz calıştırma (bakım baypaş anahtarı kapalı) yeva
Manuel başlangıç hatası	DC veriyolu veya doğtultucunun hazır olmamasından kaynaklanabilir.
Alarm susturmayı iptal	
etme	Paneldeki "HATA GIDER" veya "SESSIZ AÇIK/KAPALI" butonuna basın.
baypas modu	UPS baypas modunda
Ana devre inverter modu	UPS normal modda
Akü inverter modu	UPS akü modunda
Ortak invertör güc modu	UPS ortak güc modunda iken akü ve redresör aynı zamanda inverter ile yüke güc sağlar.
Gecersiz güc	UPS kapanır ve cıkıs bağlantısı kesilir.
Jeneratör bağlı	Jeneratör bağlantı sinvali alınır. Ortak güç modu UPS ayarına göre başlatılabilir.
BCB bağlantısı kesik	Akü anaharı durumu (bağlı değil)
BCB kapalı	Akü anahtari durumu (kapalu)
Akü tampon sarida	Akü durumu (tampon sarida)
Akü hızlı sarida	Akü durumu (hizli sarida)
Akü hosalması	Akü durumu (sarida)
Akü döngü testi devam	
edivor	Düzenli otomatik akü bakım testi devam ediyor (%20 boşaldı)
Akü kanasite testi devam	
edivor	Kullanıcı akü kapasite boşalım testini başlatır (%100 şarj boşaldı)
Akü bakım testi devam	
edivor	Kullanıcı akü bakım boşalım testini başlatır (%20 şarj boşaldı)
LIPS sistem testi devam	
edivor	Kullanıcı UPS sistemi kendi algılama testini başlatır
İnverter avarı devam	
edivor	Inverter başlatılır ve senkronize edilir
Podrocör ovarı dovam	
edivor	Redresör başlatılır ve senkronize edilir
Bakım baynas dolabı	
fanı arızası	Bakım baypas dolabında fan arızası var
Harici giris valitim	
dönüstürücü asırısıcaklığı	Harici giriş yalıtım dönüştürücüsü aşırı sıcaklıkta
Harici cıkıs valıtım	
dönüstürücü asırısıcaklığı	Harici çıkış yalıtım dönüştürücü aşırı sıcaklıkta
. ,	

E

Alarm	Tanımı				
Anormal akü odası çevresi	Akü oda çevresi dikkat çağırısı				
Akü kontaktör bağlantısı kesildi	Akü konaktörünün bağlantısı kesilmiş				
Kapalı akü kontaktörü	Akü kontaktörü kapalı				
Ters bağlanan akü	Aküyü yeniden bağla ve akü kablosunu kontrol et				
Geçersiz akü	Akü ve akü kablosunu kontrol et				
Otomatik başlangıç	Akü boşalımının sonu UPS'in kapatılmasına yol açar, ana şebeke yeniden başladığında inverter otomatik olarak başlar				
Çevrim içi redresör geliştirme	Redresör yazılımı geliştirmesi devam ediyor				
Çevrim içi inverter geliştirme	Inverter yazılımı geliştirmesi devam ediyor				
Çevrim içi izleme geliştirme	İzlemeyazılımı geliştirmesi devam ediyor				
Giriş kontaktörü hatası	Giriş kontaktöründe arıza var				
Kontaktör güç panosu 1 arızası	Kontaktör güç paneli 1'de arıza var				
Kontaktör güç panosu 2 arızası	Kontaktör güç paneli 2'de arıza var				
Anormal LBS	Anormal LBS				
DSP yazılım hatası	İnverter yazılımı ve redresör yazılımı farklı modelde				

Bölüm 8 Seçenekler

Bu bölüm UPS kurulumundan önce kurulması gereken UPS ürünlerinin seçeneklerini kapsar.

8.1 Akü Topraklama Hatası Kitleri:

UPS sistemi harici ana şebeke giriş terminali ve UPS'de donatılmış yalıtım dönüştürücüden önce kurulan kaçak akım koruma cihazına ek olarak, akü topraklama hatası kitleri de sistemi güvenilir bir şekilde işlemesi için akü topraklama hataları algılar ve ortadan kaldırır. İzlenen kaçak akım aralığı 30mA~3000mA.

```
Güç: 230Vac (L-N)
```

Akü topraklama hatası tespit edildiğinde UPS panelinde alarm mesajı çıkar.

Ayrıca uzaktan izleme için kuru kontak hatası alarm sinyali vardır.

Tablo 8-1Uzaktan izlemek için kuru kontak hatası alarm sinyali

Terminal	İsmi	Tanımı
21	Ortak port	
22	Normalde kapalı	Akü topraklama hatası kitleri alarm veya alarm öncesi olarak kurulabilir.
24	Normalde açık	

Akü topraklama hatası kitleri bir akım dönüşürücü (CT) ve bir DC hassas sızıntı akım tanımlama cihazı içerir. Bu özelliğin kurulumu ve bağlantısı Şekil 8-1'de gösterilmiştir.

Sekil 8-1Akü topraklama hatası kablolama şeması

8.2 Uzaktan Alarm İzleme Paneli

Uzaktan alarm izleme paneli (RAM) UPS durumu ve alarm bilgisini verir. Aktarma alarm panelinden alarm durum kontajı sıfır voltaj ile çalışır. (Bu ekipman listesinde yer almasa bile kullanıcı tarafından alınabilinen, UPS serisi modellerinin ortak özelliğidir.)

8.3 Toz Ekran Değiştirme

UPS sistemine iki toz ekran takmak için sadece Philip tornavida gereklidir. Her birtoz ekranın sabitleme için iki tarafında sabitleme şeriti vardır. Toz ekran değiştirme prosedürü aşağıdaki gibidir:

1.UPS ön kapısını açın, ön kapıdan içeride toz ekran şekil 8-2'deki gibi görünür.

2.Bir taraftaki sabitleme şeritini çıkartın ve çıkarmadan diğer taraftakivida tutucusunu şekil 8-2'deki gibi gevşetin.

- 3.Değiştirilecek toz ekranı çıkartın.
- 4. Temiz bir toz ekran takın.
- 5.Çıkarılmış sabitleme şeritini yerine takın ve vida tutucusunu sıkılaştırın.

6.Diğer taraftaki sabitleme şeritinin vida tutucusunu sıkılaştırın.

Sekil 8-2Toz ekran değiştirme

Bölüm 9 Ürün Özellikleri

Bu bölüm UPS ürünlerinin özelliklerini kapsar.

Uygulanabilir Standartlar

UPS tasarımı Tablo 9-1'de gösterildiği gibi Avrupa ve uluslar arası standartlara uyum sağlar.

Tablo 9-1Avrupa ve uluslararası standart

Madde	Standart
UPS çalışma bölgesi için genel güvenlik koşulu	EN62040-1-1/IEC62040-1-1/AS62040-1-1
UPS EMC koşulu	EN62040-2/IEC62040-2/AS62040-2 (C2 Sınıfı)
UPS performans belirleme metotu ve test koşulu	EN62040-3/IEC62040-3/AS62040-3 (VFI SS 111)
Not:Listelenen standartlar güvenlik (60950), elektromanyetik	radyasyon ve bağışıklık (IEC/EN/AS61000 serileri) ve yapı
(IEC/EN/AS60146 serileri ve 60529) genel standartlarının ilgili m	addelerini içerir.

9.2 Çevre Özellikleri

Tablo 9-2Çevre Özellikleri

Madde	Birim	Koşul	
1m içinde Gürültü	dB	56.0	
Rakım yüksekliği	m	≤1000, 1000~2000 aralığında her 100m için %1 değer kaynı	
bağıl nem	%	0~95, yoğunlaşma olmadan	
Çalışma sıcaklığı	°C	0~40; Not: 20 °C üzerinde 10 °C'lik her artışta akü ömrü yarıya iner	
UPS depolama / taşıma sıcaklığı	°C	-20~70	
Önerilen akü muhafazası sıcaklığı	°C	-20~30 (20 ºC-20~30 (20 ºC akü mehafaza sıcaklığı için en iyi derecedir)	

9.3 Mekanik Özellikler

Tablo 9-3Mekanik özellikler

Nominal güç (KVA)	Birim 30 60 90			90	120	150
Mekanik boyutlar (W×D×H)	mm	600×843×1400	0			
Ağırlık(akü hariç)	kg	200	234	268	302	336
renk		Siyah				
Koruma sınıfı, IEC (60529)		IP20 (ön kapı	açık veya kapal)		

9.4 Elektriksel Özellikler (Giriş Redresör)

Tablo 9-4Redresör AC girişi (ana şebeke)

Nominal güç (KVA)	birim	30~150
Nominal AC giriş voltajı ¹	Vac	380/400/415 (üç aşamalı baypas girişi ile nötr kabloyu paylaşır
Giriş voltaj aralığı ²	Vac	228~437
Frekans ²	Hz	50/60 (aralık: 40~70)
Güç faktörü	kW/kVA, tam yük (yarım yük)	0.99 (0.98)
çıkışgücü	kVA nominal ³ (Maksimum ⁴)	175
Giriş akımı	kVA nominal ³ (Maksimum ⁴)	300
Toplam harmonik bozulma	THDI%FL	3
Baslangic zamani	9	Tam nominal akıma 10s10s (ayarlanabilir, aralık: 5~30s, bir sınıf için
Daşıangıç zamanı	5	5s)

Not:

1.Redresör hiçbir ayarlama gerekmeden nominal güç voltajı ve frekans altında normal çalışabilir.

2.305V giriş voltaj noktasına, nominal yüklü UPS akü boşalımı olmadan çıkış voltajı ayarını korur.

3. IEC 62040-3/EN50091-3: nominal yük, nominal giriş voltajı 400V, akü şarjı

4. IEC 62040-3/EN50091-3: nominal yük, nominal giriş voltajı 400V, maksimum nominal akımda akü şarjı

9.5 Elektriksel Özellikler (DC Bölümü)

Tablo 9-5Akü

DC bölümü							
Nominal güç (KVA)	Birim	30~150					
Akü verivolu voltaiı	Vdc	Nominal : 432 (vana kontrollü kurşun asit akünün tampom şarj voltajı 540V'dir)					
		Aralık: 400~61	6				
Kurşun ait akü pili	Nominal	36=[1pil (12V)]					
sayısı	Maksimum	40=[1 pil (12V)	40=[1 pil (12V)]				
	Minimum	30=[1 pil (12\	/)]				
Duba şarj voltajı	V/pill (VRLA)	2.25 (ayarlama	aralığı :2.2~2.3	Sabit akım ve sabit	: gerilim şarj modı	1	
Sıcaklık dengelemesi	mV/ ºC/cl	-3.0 (ayarlama	aralığı: 0~-5.0, 2	5 ºC or 30 ºC, veya	a devre dışı)		
dalgalanma voltajı	% V tampon şarj	≤1					
Dalgalanma akımı	% C ₁₀	≤5					
Kuvvetlendirme şarj voltajı	V/pil (VRLA)	2.35 (ayarlama	aralığı:2.2~2.40), Sabit akım ve sa	bit gerilim şarj mo	du	
Kuvvetlendirme şarj kontrolü		 Şarj akım tetikleyicisini kuvvetlendirmek için tampon şarj 0.050C₁₀ (ayarlama aralığı:0.030~0.070) Tampon şarj akım tetkleyicisine şarjı kuvvetlendirme 0.050C₁₀ (ayarlama aralığı:0.030~0.025) 24-saat güvenli zaman limiti (ayarlama aralığı:8 'den 30 saate kadar) Şarj modunu kuvvetlendirme ayarlanamaz 					
Voltaj boşalım bitimi	V/pil(VRLA)	1.63 (ayarlama aralığı:1.60~1.75) Otomatik reversiyon, boşalma voltajı sonu× deşarj akımı modu (düşük akım boşalımı ile artan voltaj boşalımı sonu)					
Akü şarjı	V/pil	2.4 (ayarlama aralığı:2.3~2.4) sabit akım ve sabit gerilim şarj modu Otomatik tetikleyici veya şarj modunu kuvvetlendirmenin devre dışı olması ayarlanabilir					
Akü şarj hacmi ¹ Maksimum akım (ayarlanabilir) ²	UPS (kVA)	30	60	90	120	150	
	Şarj gücü (kW)	4.5	9	13.5	18	22.5	
	Maksimum şarj akımı A	11	22	33	44	55	
Not:	rla LIDC aari kanaa	نتموز طنوبتار وزيرا		de etemetik elevel	· orter (anadic na	minal makaimum	

1. Artan yüklerle UPS şarj kapasitesi düşük giril voltajı durumunda otomatik olarak artar (ancak nominal maksimum kapasite ile sınırdlıdır)

2. 1.67V/pil ile 240 pil voltaj boşalımının sonuna maksimum akım uygulanır

9.6 Elektriksel Özellikler (İnventer Çıkışı)

Nomina güç (KVA)	Birim	30~150
Nominal AC voltajı ¹	Vac	380/400/415 (üç-aşamalı dört-kablo, baypas ile aynı nötr hattı paylaşır)
Frekans ²	Hz	50/60
Inverter aşırı yük kapasitesi	%	105, 60dk 110, 10 dk 125, 1 dk >150, 200ms>150, 200ms
Arıza sonrası akım	%	310% akım limiti 200ms
Doğrusal olmayan yük Kapasitesi ³	%	100
Nötr kablonun akım kapasitesi	%	170

UPS Modülü ve Paralel Sistem 30kVA~150kVA Kullanıcı Kılavuzu

Nomina güç (KVA)	Birim	30~150		
Kararlı durum	%	+1		
voltajkararlılığı	70	±1		
Geçici voltaj tepkisi4	%	±5		
Toplam harmonik	0/	at (doğrupol yük için) at (doğrupol olmoyon yük için ³)		
bozulma	/0	< 1 (uugiusai yuk içiii), <4 (uugiusai oiinayati yuk içiti)		
Senkron aralığı		Nominal frekans:±2Hz (ayarlama aralığı: ±0.5~±3Hz)		
Maksimum senkron	Hz/c	1: avarlama aralığı: 0.1~2 (tek bir medül için) 0.2 (paralal çiştem için)		
frekans değişim oranı	112/5	r, ayanama arangi. 0.175 (tek bir modul için), 0.2 (paralel sistem için)		
Not				

Not:

1.Parametre üretici tarafından 400V olarak kurulur ve kurulum mühendisi tarafından 380V veya 415V olarak ayarlanabilir.

2.Parametre üretici tarafından 50Hz olarak kurulur ve kurulum mühendisi tarafından 60Hz olarak ayarlanabilir. Frekans dönüştürücü modu olarak kurulabilir.

3. EN50091-3 (1.4.58) zirve oran: 3: 1.

4. IEC62040-3/EN50091-3 0%~100%~0% yük geçiciliği içerir. Kurtarma süresi hazır durum çıkış voltajının %5'idir, örn. yarım döngü.

9.7 Elektriksel Özellikler (baypas Ana şebeke Girişi)

Tablo 9-7Baypas Ana şebeke Girişi

Nominal güç	; (KVA)	Birim	30~150
Nominal AC	voltajı ¹	Vac	380/400/415; üç-aşamalı dört-kablo, redresör girişi ile aynı nötr hattı paylaşır ve çıkış için seçenekler sunar
Nominal	380V	А	225
Nominal	400V	А	215
aniiii	415V	А	205
Aşırı yük		%	110, uzun vadeli
Sistem giriş ve baypas	i koruması hattı	N/A	Termomanyetik anahtarı, nominal çıkış akımı IEC 60947-2 C eğrisinin %125'ine eş kapasite ile
Nominal r akımı	nötr kablo	А	1.7×ln
Frekans ²		Hz	50/60
Aktarım (baypas arasındaki)	zamanı ile inverter	ms	Senkron aktarımı: ≤1; uyumsuz aktarım (varsayılan):15 (50Hz), 13.3 (60Hz); veya 40, 60, 80 ve 100 isteğe bağlı
baypas vol	taj aralığı	%Vac	Üst limit: +10, +15 veya+20, varsayılan:+15; Alt limit: -10, -20, -30 or -40, varsayılan: -20; statik baypas voltaj alıcı için erteleme süresi: 10s
baypas frel	kans aralığı	%	±10veya ±20, varsayılan: ±10
Senronizasy	on aralığı	Hz	Nominal frekans:±2 (ayar aralığı: ±0.5~±3)
Not:			
1.Parametre	e üretici tarafı	ndan 400V	/ olarak kurulur ve kurulum mühendisi tarafından 380V veya 415V olarak ayarlanabilir.

2.Parametre üretici tarafından 50Hz olarak kurulur ve kurulum mühendisi tarafından 60Hz olarak ayarlanabilir. Ğer UPS frekans dönüşrücü modunda kurulursa baypas durumu yok sayılır.

9.8 Frekans, Termal Kaybı Ve Hava Değişimi

Tablo 9-8Frekans, ısı kaybı ve hava değişimi

		•				
Nominal Güç (KVA)	Birim	30	60	90	120	150
Sistem etkinliği						
Normal mod(çift dönüşüm)	%	96				
Inverter etkinliği (DC/AC) (Akü normal voltaja sahip: 432Vdc, tam nominal doğrusal yük)						
Akü modu	%	96				
Isı kaybı ve patlama hacmi						
Normal mod	kW	1.2	2.4	3.6	4.8	6
Yüksüz	kW	1.2	2.4	3.6	4.8	6
Maksimum güçte rüzgarlı soğutma (ön giriş ve arka çıkış)	L/sec	48	96	144	192	239
Not: Griş ve çıkış voltajları 400Vac; akü şarj olmuş, tam nominal doğrusal yük bağlanmış						

Ek 1 Lectotype ve Harici Akü Devre Kesicinin Bağlantısı

			-			
Nominal güç (KVA)	Birim	30	60	90	120	150
Tam yükte maksimum akü						
boşalım akımı	А	105	210	315	420	525
Devre kırıcının nominal akımı	А	150	250	350	450	550
Bağlantı kablosu boyutu	mm ²	35	70	105	140	175
Not						

Table 1 Devre kırıcı nominal akım ve kablo boyut seçimi tablosu

1. Eğer nominal akım limitinden dolayı 15kVA UPS için positif ve negatif terminalin (örn. akü boytunun dışında dönen 4 kablo) ayrı kablolanması için harici akü kurulursa 4P plastik kapaklı DC devre kırıcı (devre kırıcının DC nominal voltajı tekkutup 250Vdc/iki kutuğ 500Vdc/üç kutup 750Vdc olmalı ve nominal kısa devre bağlantıkesme kapasite limiti 35KA olmalıdır) veya iki 2P plastik kapaklı DC devre kırıcı (devre kırıcının DC nominal voltajı tek kutup 250Vdc/çift kutup 500Vdc olmalıdır ve nominal kısa devre bağlantı kesme kapasite limiti 35KA olmalıdır.) önerilmektedir. Akü, devre kırıcı ve UPS arasındaki bağlantı şekil 1'de gösterildiği gibir.

2. Eğer CT kablolama (örn. akü çevresini oluşturacak 3 kablo) için harici akü kurulursa 4P plastik kapatlı DC devre kırıcı (devre kırıcının DC nominal voltajı tekkutup 250Vdc/iki kutuğ 500Vdc/üç kutup 750Vdc olmalı ve nominal kısa devre bağlantıkesme kapasite limiti 35KA olmalıdır) önerilmektedir. Akü, devre kırıcı ve UPS arasındaki bağlantı şekil 2'de gösterildiği gibir.

Sekil 1 Harici akü dört kablo bağlantısına uyduğunda akü, devre kırıcı ve UPS'in kablolama şeması

Sekil 2 Harici akü üç kablo bağlantısına uyduğunda akü, devre kırıcı ve UPS'in kablolama şeması

İTHALATÇI / İMALATÇI FİRMANIN

UNVANI : TESCOM ELEKTRONİK SANAYİ ve TİCARET A.Ş <u>MERKEZ</u> <u>ADRESİ</u> : <u>Dudullu Organize Sanayi Bölgesi 2.Cadde No:7 Zemin Kat Ümraniye / İSTANBUL</u> <u>TEL / TELEFAKS</u> : <u>0850 277 88 77 / 0216 527 28 18</u> (Hem İmalatçı hem de ithalatçı firma) SHENZHEN SORO ELEKTRONICS CO. LTD.. Guangyang Industrial Park , Hi-tech Development Zone , Fuyong Town Bao an District Shen Zhen Guangdong 518103 P.R. China

Tel. +86-755-81495850/51/52/53 Fax. +86-755-81495855

İZMİR Bölge Müdürlüğü (Fabrika ve Yurtdışı Satış Ofisi)ADRESİ10009 sk. No:1 , Ulukent Sanayi Sitesi 35660 Menemen – İZMİRTEL / TELEFAKS:0232 833 36 00 pbx / 0232 833 37 87

WEB : http://www.tescom-ups.com e-mail: info@tescom-ups.com

YETKILİ SERVİS İSTASYONUNUN

SIRA NO	UNVANI	ADRESİ	YETKİLİSİNİN ADI SOYADI	TEL/TELEFAKS
1	TESCOM ELEKTRONİK SANAYİ VE TİCARET AŞ.	10009 SOK. NO:1 SANAYİ SİTESİ ULUKENT MENEMEN/İZMİR	ÜMİT TURHAN BÜLENT SAĞEL MOŞE SALTİEL	0 232 833 36 00 0 232 833 37 87
2	ATILGAN MÜHENDİSLİK KESİNTİSİZ GÜÇ KAYNAKLARI SATIŞ VE ONARIM SERVİSİ MEHMET ZÖHRE SAHIS	HUZUREVLERİ MH. 77232 SK. BİLAL İŞLEK APT. NO:24 ÇUKUROVA-ADANA	CEM ÖNÜRDEŞ	0 322 458 69 17
3	TES TÜM ELK. SERVİS VE SATIŞ HİZ. SAN VE TİC LTD ŞTİ	MİMAR SİNAN CAD.NO:56/A BAĞLAR MAH. GÜNEŞLİ/İSTANBUL	НАВІВ КАҮА	0 212 630 07 07
4	ATİLAY ELK. ELEKTRİK MEDİKAL İNŞAAT SAN. TİC.LTD ŞTİ	ALİPAŞA MH. KONGRE CD. HASIRHAN İŞ MERKEZİ ZEMİN KAT NO:109 ERZURUM	ALPASLAN ATİLAY	0 442 213 30 60
5	GÜLKOM MÜH.BİL. GIDA ELK. SAN. VE TİC. LTD.ŞTİ	GAZİPAŞA MH. CUDİBEY MEKTEP SK. MAHMUT REİS APT. NO:7 D:4 TRABZON	ENGIN SEZGIN	0 462 326 99 58
6	GARLI GIDA MED. ELK. ELEK. TUR. İNŞ. NAK İTH. İHR. PAZ. SAN. TİC. LTD. ŞTİ	PEYAS MH. 471.SOK OPKAR 3 APT ALTI NO:1/A KAYAPINAR-DİYARBAKIR	ŞAHRİBAN AKGÜGER	0 412 251 62 38 0 505 602 35 80
7	GESİS GENEL ELEK. ELEKT. SİSTEMLERİ SAN. VE TİC. LTD. ŞTİ.	OMURTAK CAD. OLİMPİA İŞ MERKEZİ NO:33 ÇORLU-TEKİRDAĞ	İLKAY DUDU	0282 673 48 96
8	DİALOG ELEKT. ELEK. İLETİŞİM HİZ.VE OTOMASYON DAN.PROJE TAAHHÜT SAN. VE TİC.LTD.ŞTİ	KIRCAALİ MAH. GAZCILAR CAD. ANAFARTA SOK.NO:5/B BURSA	TİMUÇİN KARAER	0224 253 42 11
9	TEST TÜM ELEKTRONİK SANAYİ VE TİCARET A.Ş. ANKARA ŞUBESİ	GÖKKUŞAĞI MAH. 1222CAD.NO:4/16 ÇANKAYA - ANKARA	ÜMİT TURHAN BÜLENT SAĞEL MOŞE SALTİEL	0312 476 24 37
10	TESCOM ELEKTRONİK SANAYİ VE TİCARET AŞ.	İvedik OSB Melih Gökçek Bulvarı 1122. Cad. Maxivedik İş Merkezi No:20/106	BEKİR CAN ŞAHİN	0312 476 24 37

UPS Modülü ve Paralel Sistem 30kVA~150kVA Kullanıcı Kılavuzu

BU BELGE 6502 SAYILI TÜKETİCİNİN KORUNMASI HAKKINDA KANUN ve BU KANUN KAPSAMINDA YÜRÜRLÜĞE KONULAN GARANTİ BELGESİ YÖNETMELİĞİ UYARINCA DÜZENLENMİŞTİR.

GARANTİ ŞARTLARI

A. 6502 sayılı Tüketicinin Korunması Hakkında Kanun ve bu kanuna dayanılarak yürürlükte olan Garanti Belgesi Yönetmeliği uyarınca, işbu kanun kapsamındaki tüketiciler için geçerlidir.

1 - Garanti süresi, malın teslim tarihinden itibaren başlar ve 2 yıldır.

2 - Malın bütün parçaları dahil olmak üzere tamamı garanti kapsamındadır.

3 - Malın ayıplı olduğunun anlaşılması durumunda tüketici, 6502 sayılı Tüketicinin Korunması Hakkında Kanunun 11 inci maddesinde yer alan;

a- Sözleşmeden dönme,

b- Satış bedelinden indirim isteme,

c- Ücretsiz onarılmasını isteme,

ç- Satılanın ayıpsız bir misli ile değiştirilmesini isteme,

seçimlilik haklarından birini kullanabilir.

4 - Tüketicinin bu haklardan ücretsiz onarım hakkını seçmesi durumunda satıcı; işçilik masrafı, değiştirilen parça bedeli ya da başka herhangi bir ad altında hiçbir ücret talep etmeksizin malın onarımını yapmak veya yaptırmakla yükümlüdür. Tüketici ücretsiz onarım hakkını üretici veya ithalatçıya karşı da kullanabilir. Satıcı, üretici ve ithalatçı tüketicinin bu hakkını kullanmasından müteselsilen sorumludur.

5 - Tüketicinin, ücretsiz onarım hakkını kullanması halinde malın;

- Garanti süresi içinde tekrar arızalanması,
- Tamiri için gereken azami sürenin aşılması,

- Tamirinin mümkün olmadığının, yetkili servis istasyonu, satıcı, üretici veya ithalatçı tarafından bir raporla belirlenmesi durumlarında; tüketici malın bedel iadesini, ayıp oranında bedel indirimini veya imkân varsa malın ayıpsız misli ile değiştirilmesini satıcıdan talep edebilir. Satıcı, tüketicinin talebini reddedemez. Bu talebin yerine getirilmemesi durumunda satıcı, üretici ve ithalatçı müteselsilen sorumludur.

6 - Malın tamir süresi 20 iş gününü, geçemez. Bu süre, garanti süresi içerisinde mala ilişkin arızanın yetkili servis istasyonuna veya satıcıya bildirimi tarihinde, garanti süresi dışında ise malın yetkili servis istasyonuna teslim tarihinden itibaren başlar.Malın arızasının 10 iş günü içerisinde giderilememesi halinde, üretici veya ithalatçı; malın tamiri tamamlanıncaya kadar, benzer özelliklere sahip başka bir malı tüketicinin kullanımına tahsis etmek zorundadır. Malın garanti süresi içerisinde arızalanması durumunda, tamirde geçen süre garanti süresine eklenir.Garanti uygulaması sırasında değiştirilen malın garanti süresi satın alınan malın kalan garanti süresi ile sınırlıdır.Satılan mala ilişkin olarak düzenlenen faturalar garanti belgesi yerine geçmez.

7 - Malın kullanma kılavuzunda yer alan hususlara aykırı kullanılmasından kaynaklanan arızalar garanti kapsamı dışındadır.

8 - Tüketici, garantiden doğan haklarının kullanılması ile ilgili olarak çıkabilecek uyuşmazlıklarda yerleşim yerinin bulunduğu veya tüketici işleminin yapıldığı yerdeki Tüketici Hakem Heyetine veya Tüketici Mahkemesine başvurabilir.

9 - Satıcı tarafından bu Garanti Belgesinin verilmemesi durumunda, tüketici Gümrük ve Ticaret Bakanlığı Tüketicinin Korunması ve Piyasa Gözetimi Genel Müdürlüğüne başvurabilir.

B. Ticari satımlarda, satış sözleşmesindeki garanti şartları, hüküm bulunmayan hallerde Türk Ticaret Kanunu hükümleri uygulanır.

AGKK11534 02/2019

<u> Üretici Firma :</u>

TESCOM ELEKTRONİK SANAYİ VE TİCARET A.Ş.

MERKEZ

ADRESi: Dudullu Organize Sanayi Bölgesi2.Cadde No:7 Zemin Kat Ümraniye / İSTANBULTel: 0850 277 88 77Faks: 0216 527 28 18

İZMİR BÖLGE MÜDÜRLÜĞÜ

(Fabrika ve Yurtdışı Satış Ofisi): 10009 sk. No:1 . Ulukent Sanavi Sitesi

Yetkili Servis :

TESCOM ELEKTRONIK SANAYİ VE TİCARET A.Ş.

izmir bölge müdürlüğüADRESI: 10009 SOK. NO:1 SANAYİ SİTESİ
ULUKENT MENEMEN/İZMİRTEL / TEL FEAKS: 0 232 833 36 00 / 0 232 833 37 87