

Önsöz

Kullanım

Bu el kitabı, modüler KGK'nın kurulumu, kullanımı, çalıştırılması ve bakımı hakkında bilgiler içerir. Lütfen bu el kitabını kurulumdan önce dikkatlice okuyun.

Kullanıcılar

Teknik Destek Mühendisi Bakım Mühendisi

Not

Şirketimiz, tam kapsamlı teknik destek ve hizmetler sağlar. Müşterilerimiz yardım için yerel ofisimize veya müşteri hizmet merkezine başvurabilirler. Bu el kitabının güncellenmesi, ürün yükseltimi veya diğer nedenlerden dolayı düzensiz olarak yapılacaktır. Daha önceden bir anlaşma sağlanmadığı takdirde, bu el kitabı sadece kullanıcı kılavuzu olarak kullanılır ve kitapta bulunan beyan ve bilgiler açık veya ima yoluyla garanti olarak kabul edilmeyecektir.

İçindekiler

1. Güvenlik Önlemleri
Uvan Etiketi
Güvenlik Talimatı
Tasıma ve Kurma
Hata Giderme ve Calıstırma
Bakım ve Yenileme
Akü Güvenliği3
Bertaraf Etme ve Geri Dönüşüm4
2. Ürün Tanıtımı
2.1 Sistem Yapılandırması
2.2 Güç Modülü
2.3 Çalıştırma Modları
2.3.2 Akü Modu
2.3.3 Bypass Modu7
2.3.4 Bakım Modu (Manuel Bypass)7
2.3.5 ECO Modu
2.3.6 Otomatik Yeniden Başlatma Modu9
2.3.7 Frekans Çevirici Modu9
2.4 KGK Yapısı
2.4.1 KGK Yapılandırması9
2.4.2 KGK Görünümü9
3. Kurulum Talimatları
3.1 Konum
3.1.1 Kurulum Ortamı
3.1.2 Yer Seçimi
3.1.3 Boyut ve Ağırlık13
3.2 İndirme ve Ambalaj Açılması15
3.2.1 Kabinin Taşınması ve Ambalajının Açılması15
3.2.2 Güç Modülü Ambalajının Açılması16
3.3 Yerleştirme
3.3.1 Kabini Yerleştirme17
3.3.2 Güç Modülünün Kurulumu
3.4 Aküler
3.5 Kablo Girişi
3.6 Güç Kabloları
3.6.1 Teknik Özellikler25
3.6.2 Güç Kabloları Terminalleri Teknik Özellikleri25
3.6.3 Devre Kesiciler

3.6.4 Güç Kablolarının Bağlanması	26
3.7 Kontrol ve Haberleşme Kabloları	
3.7.1 Kuru Kontak Arabirimi	29
3.7.2 Haberleşme Arabirimleri	35
4. KGK ve Modül Kontrol Paneli	
4.1 Giriş	
4.2 Güç Modülü için LCD paneli	
4.2.1 LED Gosterge.	
4.2.2 Kontrol ve Çalıştırma Düğmeleri	
4.2.3 LCD Ekran	37
4.3 KGK operatör paneli	40
4.3.1 LED Göstergeler	40
4.3.2 Kontrol ve Çalıştırma Düğmeleri	41
4.3.3 LCD dokunmatik Ekran	42
4.4 Ana Menü	43
4.4.1 Cabinet (Kabin)	43
4.4.2 Module (Modül)	45
4.4.3 Settings (Ayarlar)	48
4.4.4 Log	50
4.4.5 Operate (Çalıştırma)	53
4.4.6 Scope (Osiloskop)	55
5. Çalıştırma	57
5.1 KGK'yı Devreye Alma	57
5.1.1 Normal Modda Çalıştırma	57
5.1.2 Aküden Çalıştırma	58
5.2 Çalıştırma Modları arasında Geçiş Yapma Yöntemi	59
5.2.1 KGK'yı Normal Moddan Akü Moduna Geçirme	59
5.2.2 KGK'yı Normal Moddan Baypas Moduna Geçirme	59
5.2.3 KGK'yı Baypas Modundan Normal Moda Geçirme	59
5.2.4 KGK'yı Normal Moddan Bakım Baypas Moduna Geçirme	60
5.2.5 KGK'yı Bakım Baypas Modundan Normal Moda Geçirme	60
5.3 Akü İşlemleri	60
5.4 EPO	62
5.5 Paralel Çalıştırma Sisteminin Kurulması	62
6. Bakım	65
6.1 Onlemler	65
6.3 Bakım Talimatları	05
6.3.1 6 ve 10 yuvalık Kabinler Baypas Modülü Bakımı	65
6.3.2 20 vuvalık Kabin Statik Bavnas Ünitesi Bakımı	
6 3 3 Hava cekici fanların Bakımı	66
6 3 4 Akii Bakımı	

6.3.5 Dahili Kontrol Nötr Kablosunu Sökme	
6.4 Akü Ayarları	
6.4.1 Akü Tipi Ayarı	
6.4.2 Akü Sayısı Ayarı	
6.4.3 Akü Kapasitesi Ayarı	
6.4.4 FLOAT ve Boost Şarj Ayarları	
6.4.5 EOD Voltaj Ayarı	
6.4.6 Şarj Akımı Yüzde Limiti	
6.4.7 Akü Isı Denkleme	
6.4.8 Boost Şarj Süre Limiti	
6.4.9 Otomatik Boost Zamanı	
6.4.10 Otomatik Bakım Deşarj Zamanı	
6.4.11 Aşırı Akü ve Ortam Sıcaklığı Uyarıları	
6.5 Toz Filtresinin Değiştirilmesi (opsiyonel)	71
7. Ürünün Teknik Özellikleri	
7.1 Uyulan Standartlar	
7.2 Güvenlik Uygunluğu Beyanı ve CE İşareti	. Hata! Yer işareti tanımlanmamış.
7.3 Ortam Özellikleri	
7.4 Mekanik Özellikler	
7.5 Elektriksel Özellikler	74
7.5.1 Elektriksel Özellikler (Doğrultucu Girişi)	
7.5.2 Elektriksel Özellikler (Ara DC Bağlantısı)	
7.5.3 Elektriksel Özellikler (Evirici Çıkışı)	
7.5.4 Elektriksel Özellikler (Bypass Şebeke Girişi)	
7.6 Verim	
7.7 Ekran ve Arabirimler	
İTHALATÇI / İMALATÇI FİRMANIN	. Hata! Yer işareti tanımlanmamış.
UNVANI	. Hata: Yer işareti tanımlanmamış. . Hata! Yer işareti tanımlanmamış.

1. Güvenlik Önlemleri

Bu el kitabı, modüler KGK'nın kurulumu ve çalıştırılması hakkında bilgiler içerir. Lütfen bu el kitabını kurulumdan önce dikkatlice okuyun.

Bu Modüler KGK, üreticisinin (veya temsilcisinin) onaylamış olduğu bir teknisyen tarafından devreye alınmadıkça çalıştırılamaz. Aksi takdirde, personelin güvenliği, donanımın hatalı çalışması ve garantinin geçersizliği riskleri ile karşı karşıya kalma olasıdır.

Güvenlik Mesajları

Tehlike: Bu mesaj dikkate alınmadığı takdirde, ciddi yaralanma veya hatta ölüm sonucu doğabilir.

Uyarı: Bu mesaj dikkate alınmadığı takdirde, yaralanma veya cihaza hasar sonucu doğabilir.

Dikkat: Bu mesaj dikkate alınmadığı takdirde, veri kaybı veya düşük performans sonucu doğabilir.

Devreye Alma Mühendisi: Cihazı kuran veya çalıştıran mühendis, elektrik ve güvenlik konularında iyi eğitim almış ve cihazın çalışması, hata giderme ve bakımı konularına deneyimli olmalıdır.

Uyarı Etiketi

Uyarı etiketi yaralanma veya cihaz hasarı olasılığını belirtir ve tehlikeyi önlemek için atılması gereken doğru adımları önerir. Bu kılavuzda aşağıdaki üç tip uyarı etiketi bulunmaktadır.

Etiketler	Açıklama
Tehlike	Bu koşul dikkate alınmadığı takdirde, ciddi yaralanma veya hatta ölüm sonucu doğabilir.
Uyarı	Bu koşul dikkate alınmadığı takdirde, yaralanma veya cihaza hasar sonucu doğabilir.
Dikkat	Bu koşul dikkate alınmadığı takdirde, veri kaybı veya düşük performans sonucu doğabilir.

Güvenlik Talimatı

A	♦	Sadece devreye alma mühendisleri tarafından yapılır.			
Tehlike	\diamond	Bu KGK sadece ticari ve sanayi uygulamalar için tasarlanmış			
		olup, yaşam destek cihaz veya sistemlerinde kullanılmaz.			
	\diamond	Çalıştırmadan önce tüm uyarı etiketlerini dikkatle okuyun ve			
Uyarı 🚺		talimatları izleyin.			
	\diamond	Sistem çalışırken bu etiketi gördüğünüzde, yanıkları önlemek			
		için, yüzeye dokunmayın.			
	\diamond	KGK içinde ESD duyarlı elemanlar bulunduğundan,			
Ale A		kullanımdan önce ESD karşıtı önlemler alınmalıdır.			

Taşıma ve Kurma

	\diamond	Cihazı ısı kaynağından veya hava çıkışlarından uzakta tutun	
Tehlike	\diamond	Yangında sadece kuru toz yangın söndürücü kullanın.	Sıvı

	yangın söndürücüler elektrik çarpmasına neden olabilir.
Uyarı Uyarı	 Hasar veya anormal parçalar varsa, sistemi başlatmayın. KGK'ya ıslak malzeme veya el ile temas etmek elektrik çarpmasına neden olabilir.
Dikkat	 KGK'yı taşımak veya kurmak için uygun gereçler kullanın. Yaralanmayı önlemek için yalıtımlı ayakkabı ve koruyucu giyecekler ile diğer koruyucu gereçler gereklidir. Yerleştirirken, KGK'yı şok ve titreşimden uzak tutun. KGK'yı uygun bir ortamda kurun. Daha fazla ayrıntı için bakın bölüm 3.3.

Hata Giderme ve Çalıştırma

	\diamond	Güç kablolarını bağlamadan önce topraklama kablosunun iyice
		bağlı olduğundan emin olun. Topraklama kablosu ve nötr
		kablo, geçerli yerel ve ulusal kodlara uygun olmalıdır.
	\diamond	Kabloları taşımadan veya tekrar bağlamadan önce, tüm giriş
Tehlike		güç kaynakları ve dahili deşarj için en az 10 dakika bekleyin.
		Mültimetre kullanarak terminallerdeki gerilimi ölçün ve
		çalıştırmadan önce gerilimin 36V'nin altında olduğundan emin
		olun.
	\diamond	Yük akımının toprak kaçağı RCCB (Kaçak akım devre kesici)
		veya RCD (Kaçak akım rölesi) tarafından taşınır.
Dikkat	\diamond	Uzun süre depolanmış KGK'yı çalıştırmadan önce kontrol ve
		denetleme yapılmalıdır.

Bakım ve Yenileme

	\diamond	Dahili erişim gerektiren tüm cihaz bakım ve servis işlemleri
		için özel aletler gerekli olup, bu işlemler sadece eğitimli
		personel tarafından yapılmalıdır. Koruyucu kapağın sadece özel
		aletlerle açılmasıyla erişilebilen parçaların bakımı kullanıcı
		tarafından yapılmamalıdır.
	\diamond	Bu KGK, "IEC62040-1-1-KGK kullanıcı erişimli bölgesinde
A		alınacak KGK genel ve güvenlik önlemleri" ile tam olarak
<u>///</u>		uyumludur. Akü kutusunda tehlikeli gerilimler bulunur. Fakat
		bu yüksek gerilimlerle temas riski, servis elemanı olmayan
		personel için en aza indirilmiştir. Tehlikeli gerilim taşıyan
		parça ile sadece koruyucu kapak bir aletle açıldığında temas
		edilebildiğinden, yüksek gerilimli bir parçaya dokunma
		olasılığı en aza indirilmiştir. Cihaz bu el kitabında önerilen
		kullanım işlemleri izlenerek, normal şekilde çalıştırıldığında,
		personel için hiçbir risk yoktur.

Akü Güvenliği

	\diamond	Dahili erişim gerektiren tüm akü bakım ve servis işlemleri için
		özel aletler veya anahtarlar gerekli olup bu işlemler sadece
		eğitimli personel tarafından yapılmalıdır.
	\diamond	BİRBİRLERİNE BAĞLANDIKLARINDA, AKÜLERİN
		TERMİNAL GERİLİMİ 400Vdc'NİN ÜSTÜNDE
		OLACAĞINDAN ÖLÜMCÜL OLABİLİR.
	\diamond	Akü üreticileri, çok akü bulunan gruplar üzerinde veya
		yakınında çalışıldığında, alınacak gerekli tedbirlerin ayrıntılarını
		sağlarlar. Bu önlemlere her zaman tam ve kesin olarak
		uyulmalıdır. Yerel çevre şartları ve koruyucu giysiler, ilk yardım
		ve yangınla mücadele araçları konularında yapılan önerilere özel
		dikkat gösterilmelidir.
	\diamond	Ortam 1s1s1 akü kapasitesi ve ömrünü belirlemekte önemli bir
		faktördür. Akünün tanımlanmış çalışma ısısı 20°C'dir. Bu ısının
		üzerinde çalışma, akü ömrünü kısaltır. KGK'nın besleme
		süresini korumak için aküleri, akü kullanım el kitaplarına göre,
		düzenli aralıklarla değiştirin.
	\diamond	Aküleri sadece aynı tip ve aynı sayıda aküyle değiştirin. Aksi
		halde patlama veya düşük performansa neden olabilirler.
	\diamond	Aküyü bağlarken, yüksek gerilimle işlem yapmaya dair
		önlemleri uygulayin. Aküyü kabul edip kullanmadan önce,
		görünümünü kontrol edin. Ambalajı hasar görmüşse veya akü
		terminali kirli, aşınmış veya paslanmışsa, dış kaplaması
Tehlike		dežiatinin Algi halda algi kanagitagi dügahilin yaya alaktrik
		kaçağı yeya yangın meydana gelebilir
		 Aküleri calıştırmadan önce, parmağınızdaki vüzüğü,
		saatinizi, kolyenizi, bileziğinizi veya herhangi başka metal
		takılarınızı çıkarın.
		 Kauçuk eldivenler giyin. Kazara maydana galabilecek alektrik arkını önlemek için
		göz koruması kullanılmalıdır.
		• Sadece yalıtımlı sapı olan aletler (örneğin cıvata anahtarı)
		kullanın.
		• Aküler çok ağırdır. Yaralanmayı veya akü terminaline
		nasari onlemek için, lutten akuyu uygun yontemlerle tutun yeva kaldırın
		 Aküyü avrıstırmayın, üzerinde değisiklik uygulamayın veya
		zarar vermeyin. Aksi halde, akü kısa devresi, sızıntı ve
		hatta yaralanma sonucu doğabilir.
		• Aküde sülfürik asit bulunur. Normal çalışmada, tüm
		sulturik asit, ayırım levha ve plakasına baglıdır. Ancak, aku kaşaşı kırıldığında, aşit aküdan sızaçaktır. Bu nedenle, akü
		ile calısırken koruvucu gözlük, kaucuk eldiyen ve önlük
		kullanın. Aksi halde, asit gözünüze girerse kör olabilirsiniz
		ve cildiniz asitten zarar görebilir.
		• Akünün ömrü dolduğunda, dahili kısa devre yapabilir,
		elektrolitik akitabilir ve pozitit/negatit plakalarda aşınma
		dışına çıkabilir, şişebilir yeya şızma yapabilir. Aküyü, bu
		belirtiler olmadan değistirin.

•	Akü elektrolit sızdırırsa veya fiziksel olarak hasarlıysa, değiştirilmeli, sülfürik aside dayanıklı bir muhafazada saklanmalı ve yerel yönetmeliklere uygun olarak elden çıkarılmalıdır.
•	Elektrolit ciltle temas ederse, temas eden bölge derhal su ile yıkanmalıdır.

Bertaraf Etme ve Geri Dönüşüm

Uyarı	\$	Kullanılmış pili yerel talimatlara göre atın
	♦	Bu sembol, kullanılmış elektrikli ve elektronik ekipmanın (WEEE) genel evsel atıklarla karıştırılmaması gerektiği anlamına gelir. Bu ürünü atmak istiyorsanız, lütfen yerel yetkililerle veya satıcınızla iletişime geçin ve doğru atma yöntemini sorun. Bu ürünün doğru şekilde bertaraf edilmesi, değerli kaynakların korunmasına yardımcı olacak ve uygunsuz atık işleminden kaynaklanabilecek insan sağlığı ve çevre üzerindeki olası olumsuz etkileri önleyecektir.

2. Ürün Tanıtımı

2.1 Sistem Yapılandırması

Modüler KGK aşağıdaki parçalar ile yapılandırılır: Güç Modülleri, Bypass ve İzleme Modülü, ve manuel Bypass anahtarlı kabin. Elektrik kesildiğinde elektrik beslemesi sağlayabilmesi için bir veya birkaç akü dizisi kurulmalıdır. KGK yapılandırması aşağıdaki Şekil 2-1'de gösterilmektedir.

Şekil 2-1 6-yuvalık ve 10-yuvalık KGK Yapılandırması

2.2 Güç Modülü

Güç modülünün yapısı Şekil. 2-3'de gösterilmiştir. Güç modülünde bir doğrultucu, bir evirici ve harici akülerin şarj ve deşarjları için bir DC/DC çevirici bulunur.

Şekil 2-3 Güç modülü yapısı

2.3 Çalıştırma Modları

Modüler KGK, aşağıdaki modlarda çalıştırılabilen, on-line, çift çeviricili bir KGK'dır:

- Normal mod
- Akü modu
- Bypass modu
- Bakım modu (manuel bypass)
- ECO modu
- Otomatik yeniden başlatma modu
- Frekans Çevirici modu

2.3.1 Normal Mod

Güç modüllerinin eviricisi sürekli olarak kritik AC yükünü besler. Doğrultucu/şarj birimi, gücünü AC şebeke giriş kaynağından alarak eviriciye DC gücü sağlarken, eşzamanlı olarak FLOAT veya BOOST şarjla ona bağlı besleme akülerini doldurur.

Şekil 2-4 Normal modda çalışma şeması

2.3.2 Akü Modu

AC şebeke giriş gücü kesildiğinde, akülerden güç alan güç modüllerinin eviricisi kritik AC yükünü besler. Şebeke kesildiğinde kritik yükte besleme kesintisi olmaz. AC şebeke giriş gücü geri geldikten sonra, "Normal mod"da çalışma, kullanıcının müdahale etmesine gerek kalmadan otomatik olarak devam edecektir.

Şekil 2-5 Akü modu çalışma şeması

🔲 Not

Akü'den başlatma işlevi sayesinde KGK şebeke olmadan da başlatılabilir. Daha fazla ayrıntı için bakın bölüm 5.1.2.

2.3.3 Bypass Modu

Eviricinin aşırı yük kapasitesi Normal modda iken aşılırsa veya evirici herhangi bir nedenle kullanılmaz duruma gelirse, statik transfer anahtarı, kritik AC yüküne giden güçte hiçbir kesinti olmadan, yükü eviriciden bypass kaynağına aktaracaktır. Evirici bypass ile eşzamansız (asenkron) durumdaysa, statik transfer anahtarı, yükü eviriciden bypass kaynağına bir güç kesintisi ile aktaracaktır. Bunun nedeni, eşzamansız AC kaynaklarının paralellenmesi dolayısıyla meydana gelebilecek yüksek ters akımları önlemektir. Bu kesinti programlanabilir, fakat tipik olarak bir elektrik devrinin ³4'ünden az, örneğin 15 ms (50 Hz)'den az veya 12,5 ms (60 Hz)'den az olarak ayarlanır. Aktarma/tekrar aktarma işlemi izleme yazılımı yoluyla verilen bir komutla da yapılabilir.

Şekil. 2-6 Bypass modu çalışma şeması

2.3.4 Bakım Modu (Manuel Bypass)

KGK kullanılamadığında, örneğin bakım işlemi sırasında (Bakın Şekil 2-7), kritik yükün beslenme devamlılığını sağlayan bir manuel bypass anahtarı bulunmaktadır.

Şeki.2-7 Bakım modu çalışma şeması

Bakım modu sırasında, tüm modüller ve LCD kapalı olsa bile, giriş, çıkış ve nötr terminallerinde tehlikeli gerilimler bulunur.

2.3.5 ECO Modu

Sistemin verimliliğini arttırmak için, KGK raf (rack) sistemi normal zamanda Bypass modunda çalışır ve evirici beklemededir. Şebeke kesildiğinde, KGK Akü Moduna geçer ve yükleri evirici besler.

Şekil.2-8 ECO Modu çalışma şeması

🔲 Not

ECO moddan akü moduna geçerken kısa bir kesinti süresi vardır (10 ms'den az). Kesintinin yük üzerinde hiçbir etkisi olmadığından emin olunmalıdır.

2.3.6 Otomatik Yeniden Başlatma Modu

Uzun bir AC şebeke kesintisinden sonra aküler boşalmış olabilir. Aküler Deşarj Geriliminin Sonuna (End of Discharge Voltage - EOD) geldiklerinde evirici kapanır. KGK, "EOD'den sonra Sistemi Otomatik Başlatma" Moduna programlanabilir. AC şebeke geri geldiğinde, bir gecikme süresinden sonra sistem çalışmaya başlar. Mod ve gecikme süresi devreye alma mühendisi tarafından programlanır.

2.3.7 Frekans Çevirici Modu

KGK, Frekans Çevirici moda ayarlanarak, KGK'dan istikrarlı olarak sabit (50 veya 60 Hz) frekans sağlanabilir ve bypass statik anahtar kullanılamaz.

2.4 KGK Yapısı

2.4.1 KGK Yapılandırması

KGK yapılandırması Tablo 2.1'de gösterilmiştir. Tablo 2.1 KGK Yapılandırması

Madde	Komponentler	Adet	Açıklama	
	Manuel Bypass	1	Zorunlu, fabrika montajlı	
6-yuvalık Kabin	Bypass ve İzleme modülü	1	Zorunlu, fabrika montajlı	
	Toz filtresi	1	Opsiyonel	
10 yawaluk	Manuel Bypass		Zorunlu, fabrika montajlı	
IU-yuvalik Kabin	Bypass ve İzleme modülü	1	Zorunlu, fabrika montajlı	
Kaulii	Toz filtresi	1	Opsiyonel	
	Güç dağıtma kabini			
	(Giriș Devre Kesici, Bypass	1	Zorunlu, fabrika montajlı	
20	Girişi, Çıkış ve Manuel	1		
20-yuvalik Vahin	Bypass)			
Kabin	İzleme ünitesi	1	Zorunlu, fabrika montajlı	
	Bypass ünitesi	1	Zorunlu, fabrika montajlı	
	Toz filtresi	1	Opsiyonel	
30 KVA	Güe medülü	1.20	Zomunlu vorindo kumulur	
Güç modülü	Guç modulu	1-20	Zorumu, yermde kurufur.	
25 KVA	Güc medülü	1.20	Zorunlu, yerinde kurulur.	
Güç modülü	Guç modulu	1-20		

2.4.2 KGK Görünümü

KGK görünümü Şekil 2-9 - Şekil 2-11'de gösterilmiştir.

Şekil 2-11 (20-yuvalık KGK Görünümü)

KGK önden görünümleri Şekil 2-12 - Şekil 2-14'de gösterilmiştir.

Şekil 2-12 (6-yuvalık KGK ön görünüm)

Şekil 2-13 (10-yuvalık KGK ön görünüm)

①LCD kontrol paneli; ②SPD; ; ③ Manuel Bypass anahtarı ④Aküden başlatma;
⑤İzleme ve statik bypass modülü; ⑥İzleme ünitesi; ⑦Statik Bypass ünitesi;
⑧20-yuvalık kabinin çıkış anahtarı Q3; Q3; ⑨ 20-yuvalık kabinin giriş anahtarı Q1

KGK'nın arkadan görünümü Şekil 2-15 – Şekil 2-17'de gösterilmiştir.

Şekil 2-17 (20-yuvalık KGK arka görünüm) ①PDU; ; ②20 yuvalık kabinin Bypass Giriş anahtarı Q3; ③20 yuvalık kabinin Manuel bypass anahtarı

3. Kurulum Talimatları

3.1 Konum

Her konumun kendi özel gereksinimleri bulunduğundan, bu bölümde yer alan kurulum talimatları, kurulumu yapan mühendis tarafından uyulması gereken genel prosedür ve uygulamalar için bir kılavuz görevi yapacaktır.

3.1.1 Kurulum Ortamı

KGK, iç mekan kullanımı için tasarlanmış olup soğutulması dahili fanların basınçlı ısı taşınım yoluyla yapılır. KGK'nin havalandırılması ve soğutulması için yeterli alan bulunduğundan emin olun.

KGK'yı su, ısı ve yanıcı, patlayıcı ve aşındırıcı maddelerden uzak tutun. KGK'yı doğrudan güneş ışığı alan, tozlu, uçucu gaz ve aşındırıcı malzeme bulunan ve yüksek tuzluluk oranı olan ortamlarda kurmaktan kaçının.

KGK'yı iletken kir bulunan bir ortamda kurmaktan kaçının.

Aküler için çalışma ortamı ısı derecesi 20^oC-25^oC'dir. 25^oC'nin üzerinde çalışma akülerin ömrünü kısaltır ve 20^oC'nin altında çalışma akülerin kapasitesini düşürür.

Şarj işlemi sonunda aküler az miktarda hidrojen ve oksijen salarlar. Akülerin kurulduğu ortamda temiz hava yoğunluğunun EN50272-2001 şartlarını karşılamasını sağlayın.

Harici aküler kullanıldığında, akü devre kesiciler (veya sigortalar) mümkün olduğu kadar akülere yakın monte edilmeli, bağlantı kabloları da mümkün olduğu kadar kısa olmalıdır.

3.1.2 Yer Seçimi

Tabanın veya kurulum platformunun, KGK kabininin, akülerin ve akü raflarının ağırlığını taşıyabileceğinden emin olun.

Titreşim olmamalı ve yatay eğim 5 dereceden az olmalıdır.

Cihaz, aşırı nem ve ısı kaynaklarından korunması için bir odada saklanmalıdır.

Aküler iyi havalandırması olan kuru ve serin bir yerde saklanmalıdır. En uygun depolama ısısı 20 °C - 25°C'dir.

3.1.3 Boyut ve Ağırlık

KGK'nın yerleşimi için yeterli alan bulunduğundan emin olun. KGK kabini için ayrılması gereken alan Şekil 3-1'de gösterilmiştir.

Dikkat

Aşağıdaki ölçülerde mesafe olmasına dikkat edin: Güç modülünün ön kapısını tam olarak açık tutabilmek için 6-yuvalık veya 10-yuvalık kabinlerin önünde en az 0,8 m, 20-yuvalık kabin için en az 1 m; havalandırma ve soğutma için 6-yuvalık veya 10-yuvalık kabinlerin arkasında en az 0,5 m, 20-yuvalık kabin arkasında en az 0,6 m mesafe olmalıdır. Kabin için ayrılması gereken alan Şekil 3-2'de gösterilmiştir.

KGK kabinlerinin boyut ve ağı	rlığı Tablo 3.1'de gösterilmiştir.
Tablo 3.1	Kabinlerin ağırlığı

Yapılandırma	Boyutlar(G×D×Y)(mm)	Ağırlık(Kg)
6-yuvalık Kabin (bypass modülü ile)	600×1100×1600	170
10-yuvalık Kabin (bypass modülü ile)	600×1100×2000	220
20-yuvalık Kabin (bypass modülü ile)	2000×1100×2000	620
20kW güç modülü	460×790×133	34

3.2 İndirme ve Ambalaj Açılması

3.2.1 Kabinin Taşınması ve Ambalajının Açılması

Kabini taşımak ve ambalajını açmak için izlenecek adımlar aşağıdadır:

- 1. Ambalajın hasarlı olup olmadığını kontrol edin. (Herhangi bir hasar varsa, taşımacı ile temasa geçin)
- 2. Şekil 3-2'de görüldüğü gibi, cihazı belirlenen alana forklift ile taşıyın.

Şekil 3-2 Belirlenen alana taşıma

3. Çelik kenarlı ahşap kasanın önce üst plakasını ve sonra, yan panolarını oluklu biz ve pense ile açın. (Bakın Şekil 3-3).

Şekil 3-3 Kasayı demonte edin

4. Kabinin etrafındaki koruyucu köpüğü çıkartın.

5. KGK'yı kontrol edin.

(a) Taşıma sırasında KGK'da bir hasar oluşup oluşmadığını gözünüzle inceleyin.

Hasar varsa, taşımacı ile temasa geçin.

(b) KGK'yı mal listesi ile karşılaştırın. Listedeki herhangi bir madde dahil edilmemişse, şirketimizle veya yerel ofisimizle temasa geçin.

- 6. Demontaj işleminden sonra kabini ahşap palete bağlayan cıvatayı sökün.
- 7. Kabini kurulacak alana taşıyın.

Ambalajı açarken, cihazın çizilmesini önlemek için dikkatli olun.

3.2.2 Güç Modülü Ambalajının Açılması

- 1. Güç modülünü taşımak ve ambalajını açmak için izlenecek adımlar aşağıdadır:
- 2. Şekil 3-5'de görüldüğü gibi, ambalaj kasası platforma düzgünce yerleştirilmelidir.

Şekil 3-5 Platforma düzgünce yerleştirin

3. Koliyi açmak için plastik ambalaj bandını ve koli bandını kesin. (Bakın Şekil 3-6).

Şekil 3-7 Köpük kapağı çıkarın

5. KGK'yı plastik ambalajından çıkarın ve ambalaj malzemelerini parçalara ayırın.

Dikkat

Ambalajdan çıkarıldıktan sonra atık malzemeler çevre koruma gereklerine göre elden çıkarılmalıdır.

3.3 Yerleştirme

3.3.1 Kabini Yerleştirme

KGK kabini kendini iki şekilde destekler: Birincisi geçici olarak alttaki 4 tekerlekle (20 yuvalık için 12) sağlanan destektir. Bu, kabinin konumunu ayarlamayı kolaylaştırır. Diğeri, kabin konumu ayarlandıktan sonra, kabini kalıcı olarak destekleyen tespit cıvataları ile destektir. Sabitleme yapısı Şekil 3-8'de gösterilmiştir.

20-yuvalık kabin

1Ayarlanabilir tespit cıvatası 2L-şekilli köşe bağlantı parçaları 3 taşıyıcı tekerlekler

Şekil 3-8 Destek yapısı (Alt görünüm)

Kabini yerleştirmek için izlenecek adımlar aşağıdadır:

- 1. Taşıyıcı yapının iyi durumda ve montaj tabanının düzgün ve sağlam olduğundan emin olun.
- 2. Tespit cıvatalarını, cıvata anahtarı ile saat yönünün tersine çevirerek gevşetin. Kabin dört tekerlekle taşınıyor olacaktır.
- 3. Kabini doğru konuma, destek tekerlekleri ile yerleştirin.
- 4. Tespit cıvatalarını, cıvata anahtarı ile saat yönüne çevirerek yerlerine oturtun. Kabin dört tespit cıvatasıyla desteklenmiş olacaktır.
- 5. Dört tespit cıvatasının da aynı yükseklikte olduğundan ve kabinin sabitlenmiş ve yerinden oynamaz durumda olduğundan emin olun.
- 6. Yerleştirme tamamlanmıştır.

Dikkat

Montaj tabanı, kabini taşıyacak kadar sağlam değilse, ağırlığı daha geniş bir alana dağıtmada yardımcı olacak aygıtlara gereksinim vardır. Örneğin tabanı demir bir levha ile örtün veya tespit cıvatalarının taşıma alanını arttırın.

3.3.2 Güç Modülünün Kurulumu

Güç modülünün kurulum konumu Şekil 3-10'da gösterilmiştir. Kabinin yüksek ağırlık merkezi nedeniyle eğimli olmasını önlemek için, lütfen güç modüllerini aşağıdan yukarıya prensibine uyarak kurun. Güç modülü kurma adımları aşağıdadır (10-yuvalık kabin örnek olarak alınmıştır):

- 1. Kabinin sabit olduğundan ve gövdesinde ve güç modülü giriş yuvasında bir hasar bulunmadığından emin olun.
- 2. Tutamakları ve güç modülünün gövdesini her bir tarafından iki kişi yardımıyla kaldırın.
- 3. Modülü kurulum konumunda içeri sokun ve kabinin içinde doğru düzgünce itin.
- 4. Modülü, modülün ön plakasının iki tarafında bulunan montaj delikleri yoluyla kabine sabitleyin. (Bakın sağda Şekil 3-9).
- 5. Güç Modülünün kurulumu tamamlanmıştır.

Şekil 3-9 Güç modülünün kurulumu

🔲 Not

Bypass modülünün kurulum yöntemi, 6-yuvalık ve 10-yuvalık kabinlerin güç modülü kurulum yöntemi ile aynıdır. 20-yuvalık kabin için Statik Bypass Ünitesi ve İzleme Ünitesi kurulumunda iç kablonun ve bakır çubukların ayrılmaları gerekmektedir.

Dikkat

- Modülü taban üzerinde konektörlerin bulunduğu arka tarafından yerleştirmeyin;
- Bypass modülü ve güç modülü ile ilgili yapılacak tüm kurulum çalışmaları, ağırlıkları nedeniyle 2 kişi tarafından, birlikte yürütülmelidir.

3.4 Aküler

Üç terminal (pozitif, nötr, negatif) akü ünitesinden çekilip KGK sistemine bağlanır. Nötr hattı seri olarak akülerin ortasından çekilir. (Bakın Şekil 3-10).

Şekil 3-10 Akü dizisi kablolama şeması

A Tehlike

Akülerin terminal gerilimi 400Vdc'den fazladır. Elektrik çarpması tehlikesini önlemek için lütfen güvenlik talimatlarına uyun.

Pozitif, negatif, nötr elektrotların akü ünitesi terminallerinden devre kesiciye ve devre kesiciden KGK sistemine doğru bağlandığından emin olun.

3.5 Kablo Girişi

6-yuvalık ve 20-yuvalık kabinler için, hem alt hem de üst kablo girişleri mevcuttur. 10-yuvalık kabin için, üst kablo girişi mevcuttur. Yine de, alt giriş gerekli olursa, opsiyonel parçalar eklenebilir.

Kablo girişleri, Şekil 3-10, Şekil 3-11 ve Şekil 3-12'de gösterilmiştir.

Şekil 3-11 (10-yuvalık kabin için üstten giriş)

Üstten giriş Şekil 3-12 20-yuvalık kabin için kablo girişleri

Modüler KGK 20-600kW Kullanıcı El Kitabı

3.6 Güç Kabloları

3.6.1 Teknik Özellikler

KGK güç kablo boyut önerileri Tablo 3.2'dedir.

 Icerikler
 120/20
 200/20

lçerikler			120/20	200/20	400/20
		Α	70	150	2*150
	Kablo	В	70	150	2*150
Şebeke Girişi	(mm^2)	С	70	150	2*150
		Ν	70	150	2*150
		Α	70	120	2*120
Cultura	Kablo	В	70	120	2*120
Çıkış	(mm ²)	С	70	120	2*120
		Ν	70	120	2*120
		Α	70	120	2*120
Bypass Girişi	Kablo (mm ²)	В	70	120	2*120
(Opsiyonel)		С	70	120	2*120
		Ν	70	120	2*120
Akü	V-hl-	+	95	185	2*185
	Kablo	-	95	185	2*185
	(111112)	N	95	185	2*185
PE	Kablo (mm ²)	PE	70	95	120

📔 Not

Güç kablolarının önerilen kablo kesitleri sadece aşağıda belirtilen durumlar içindir:

- Ortam sıcaklığı: +30°C.
- AC kaybı %3'den daha düşük olmamalı, DC kaybı %1'den daha düşük olmamalı, AC güç kabloları 50 m.'den daha uzun olmamalı ve DC güç kabloları 30 m.'den uzun olmamalı.
- Tabloda listelenen akım değerleri 380V'luk (Fazdan- faza gerilim) sistem temellidir.
 400V'luk sistem için, akımlar 0.95x, 415V'luk sistem için akımlar 0,92x olmalıdır.
- Hakim yük lineer olmadığı zaman, nötr hatların boyutu, yukarıda listelenmiş değerlerin 1,5~1,7 katı olmalıdır.

3.6.2 Güç Kabloları Terminalleri Teknik Özellikleri

Güç kabloları konektörleri için teknik özellikler Tablo 3.3'de listelenmiştir. Tablo 3.3 Güç modül terminalleri için gereksinimler

Model	Terminal	Bağlantı	Cıvata	Cıvata Açıklığı	Tork
	Şebeke Girişi	Sıkıştırılmış kablolar OT terminal	M10	/	15Nm
	Bypass Girişi	Sıkıştırılmış kablolar OT terminal	M10	/	15Nm
6-yuvalık kabin	Akü	Sıkıştırılmış kablolar OT terminal	M10	/	15Nm
	Çıkış	Sıkıştırılmış kablolar OT terminal	M10	/	15Nm
	PE	Sıkıştırılmış kablolar OT terminal	M10	/	15Nm
	Şebeke Girişi	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm
10-yuvalık kabin	Bypass Girişi	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm
	Akü	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm

	Çıkış	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm
	PE	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm
e20-yuvalık ot kabin	Şebeke Girişi	Sıkıştırılmış kablolar OT terminal	M16	17mm	96Nm
	Bypass Girişi	Sıkıştırılmış kablolar OT terminal	M16	17mm	96Nm
	Akü	Sıkıştırılmış kablolar OT terminal	M16	17mm	96Nm
	Çıkış	Sıkıştırılmış kablolar OT terminal	M16	17mm	96Nm
	PE	Sıkıştırılmış kablolar OT terminal	M12	13mm	22Nm

3.6.3 Devre Kesiciler

Sistemin devre kesicileri (CB) Tablo 3.4'de önerilmiştir.

Kurulum konumu	6-yuvalık kabin	10-yuvalık kabin	20-yuvalık kabin
Giriș CB	300A/3P	630A/3P	/
Bypass Girişi CB	300A/3P	630A/3P	/
Çıkış CB	300A/4P	630A/4P	1000A/3P
Harici bakım bypass'ı	300A/3P	630A/3P	1000A/3P
Akü CB	400A,500Vdc	800A,500Vdc	1250A,500Vdc

Tablo 3.4 Önerilen CB

20-yuvalık kabinde, Şebeke Girişi, Bypass Girişi ve Çıkış CB'leri Kabin içine kurulur.

A Dikkat

Kaçak Akım Röleli (RCD) CB kullanımı, bu sistem için önerilmez.

3.6.4 Güç Kablolarının Bağlanması

Güç kablolarının bağlantı adımları aşağıdaki gibidir:

- 1. KGK'nın tüm harici giriş dağıtım anahtarlarının tamamen açık olduklarını ve KGK'nın dahili bakım bypass anahtarının açık olduğunu doğrulayın. Yetkisiz çalıştırmayı engellemek için, bu anahtarlara gerekli uyarı etiketlerini yapıştırın.
- 2. Kabinin arka kapısını açın ve plastik kapağı çıkartın. Giriş ve çıkış terminalleri, akü terminali ve güvenlik toprak terminali Şekil 3-13, Şekil 3-14, ve Şekil 3-15'de gösterilmiştir.

Şekil 3-15 20-yuvalık bağlantı terminalleri

- 3. Güvenlik toprak hattını güvenlik toprak terminaline (PE) bağlayın.
- 4. AC giriş besleme kablolarını Şebeke Girişi terminaline ve AC çıkış besleme kablolarını Çıkış terminaline bağlayın.
- 5. Akü kablolarını Akü terminaline bağlayın.
- 6. Bir hata olup olmadığını kontrol edin ve güvenlik kapaklarını kapatın.

Bu bölümde gösterilen işlemler yetkili elektrikçiler veya kalifiye teknik personel tarafından yürütülmelidir. Zorlukla karşılaşırsanız, üretici veya temsilcisine başvurun.

- Bağlantı terminallerini yeterli tork momentlerine kadar sıkın, bkz. Tablo 3.3; ve lûtfen faz rotasyonunun doğru olduğundan emin olun.
- Bağlantıları yapmadan önce, giriş anahtarı ve güç kaynağının kapalı olduklarından emin olun. Uyarı etiketleri koyup başka kişilerin çalıştırmalarını engelleyin.
- Topraklama ve nötr kabloları yerel ve ulusal kurallara uygun olarak bağlanmalıdır.

3.7 Kontrol ve Haberleşme Kabloları

Bypass modülünün ön tarafında, kuru kontak (J2-J11) ve haberleşme (RS232, RS485, SNMP, Akıllı kart arabirimi, ve USB port) arabirimleri bulunmaktadır. 6-yuvalık ve 10-yuvalık kabinler için Şekil 3-16'ya, 20-yuvalık kabinler için Şekil 3-17'ye bakın.

Şekil 3-16 6-yuvalık ve 10-yuvalık kabinler için kuru kontak ve haberleşme arabirimleri

Şekil 3-17 20-yuvalık kabin için kuru kontak ve haberleşme arabirimleri

KGK, üretilmiş harici kuru kontak terminalleri ve phoenix terminalleri yoluyla 0-gerilim (kuru) kontaklardan harici sinyal alır. Yazılım sayesinde, bu kontaklar +24'den toprağa bağlandıkları zaman, bu sinyaller aktif olurlar. Kuru (DRY) terminale bağlanan kablolar, güç kablolarından ayrılmalıdır. Ayrıca, bu kablolar, maksimum 25 ile 50 metre arasındaki bağlantı uzunluğu için, tipik bir 0,5 ila 1,5 mm² çapraz kesit alanı ile izole edilmelidirler.

3.7.1 Kuru Kontak Arabirimi

Kuru kontak arabiriminde J2-J10 portu bulunur ve kuru kontağın işlevleri Tablo 3.5'de gösterilmiştir.

Port	Adı	İşlevi
J2-1	TEMP_BAT	Akü ısısının algılanması
J2-2	TEMP_COM	Isı algılama için müşterek terminal
J3-1	ENV_TEMP	Ortam ısısının algılanması
J3-2	TEMP_COM	Isı algılama için müşterek terminal
J4-1	REMOTE_EPO_NC	J4-2 ile bağlantı kesildiğinde Acil Kapatma (EPO)
		tetikleme
J4-2	+24V_DRY	+24V

Tablo 3.5 Portun İslevleri

J4-3	+24V_DRY	+24V		
J4-4	REMOTE_EPO_NO	J4-3 ile kısa devre durumunda EPO tetikleme		
J5-1	+24V_DRY	+24V		
15.0	CEN CONNECTED	Giriş kuru kontağı, işlev ayarlanabilir.		
J <i>J-2</i>	UEN_CONNECTED	Varsayılan: jeneratör arayüzü		
J5-3	GND_DRY	+24V için toprak		
I6-1	BCB Drive	Çıkış kuru kontağı, işlev ayarlanabilir.		
50 1		Varsayılan: Akü trip (kapama) sinyali		
		Giriş kuru kontağı, işlev ayarlanabilir.		
J6-2	BCB_Durum	Varsayılan: Akü Devre Kesici Durumu (BCB		
		Durumu) ve BCB Online, (BCB Durumu geçersız		
17 1	CND DDV	oldugu zaman aku yok uyarisi).		
J/-1	ΟΙΝΟ_ΟΚΥ	⊤24 v içili toprak Giris kuru kontoğu işlav avarlanabilir		
17-2	BCB Online	Varsavilan: BCB Durumu ve BCB Online (BCB		
J / - 2	Deb_onnie	Durumu gecersiz olduğu zaman akü vok uvarısı)		
		Cıkıs kuru kontağı (Normalde kapalı), isley		
J8-1	BAT LOW ALARM NC	ayarlanabilir.		
	22 <u>_</u> <u>.</u>	Varsayılan: Düsük akü alarmı		
		Cıkıs kuru kontağı (Normalde acık), islev		
J8-2	BAT_LOW_ALARM_NO	ayarlanabilir.		
		Varsayılan: Düşük akü alarmı		
J8-3	BAT_LOW_ALARM_GND	J8-1 ve J8-2 için ortak terminal		
		Çıkış kuru kontağı (Normalde kapalı), işlev		
J9-1	GENERAL_ALARM_NC	ayarlanabilir.		
		Varsayılan: Fault (arıza/kısa devre) alarmı		
		Çıkış kuru kontağı (Normalde açık), işlev		
J9-2	GENERAL_ALARM_NO	ayarlanabilir.		
		Varsayılan: Fault (arıza/kısa devre) alarmı		
J9-3	GENERAL_ALARM_GND	J9-1 and J9-2 için ortak terminal		
		Çıkış kuru kontağı (Normalde kapalı), işlev		
J10-1	UTILITY_FAIL_NC	ayarlanabilir.		
		Varsayılan: Şebeke anormal alarmı		
J10-2		Çıkış kuru kontağı (Normalde açık), işlev		
	UTILITY_FAIL_NO	ayarlanabilir.		
		Varsayılan: Şebeke anormal alarmı		
J10-3	UTILITY_FAIL_GND	J10-1 and J10-2 için ortak terminal		

📔 Not

Her portun ayarlanabilir işlevleri izleme yazılımı ile ayarlanabilir.

Her portun varsayılan işlevleri aşağıda açıklanmıştır.
Akü Arayüzü ve Ortam Isı Algılaması

J2 ve J3 giriş kuru kontağı, sırasıyla akülerin ve ortamın ısısını algılar ve bu işlev, ortam izleme ve akü ısı dengeleme için kullanılabilir.

J2 ve J3 Arayüz şemaları Şekil 3-14'de gösterilmektedir, arayüzün açıklaması Tablo 3.6'dadır.

Şekil 3-18 Isı algılama için J2 ve J3

Tablo	3612	ve I3'ün	acıklaması
10010	J.0 JZ	ve jo un	açıklaması

Port	Adı İşlevi		
J2-1	TEMP_BAT	Akü ısısının algılanması	
J2-2	TEMP_COM	müşterek terminal	
J3-1	ENV_TEMP	Ortam ısısının algılanması	
J3-2	TEMP_COM	müşterek terminal	

Not

Isı algılama için belirli ısı sensörleri gerekir (R25=5Kohm, B25/50=3275); sipariş vereceğiniz zaman lütfen üretici veya yerel bakım mühendislerine başvurun.

Uzaktan Acil Kapatma (EPO) Giriş Portu

J4, uzaktan EPO için giriş portudur. Normal çalıştırmada, NC (J4-1) ve +24V (J4-2)'nin kısa devrelenmesi ve NO (J4-4) ve +24V (J4-3) bağlantılarının kesilmesi gerekir. Port şeması Şekil 3-19, ve port açıklaması Tablo 3.7'de gösterilmektedir.

Şekil 3-19 Uzaktan EPO için giriş portu şeması

|--|

Port	Adı	İşlevi
J4-1	REMOTE_EPO_NC	J4-2 ile bağlantı kesildiğinde EPO'yu tetikleme
J4-2	+24V_DRY	+24V

J4-3	+24V_DRY	+24V
J4-4	REMOTE_EPO_NO	J4-3'e bağlanıldığında EPO'yu tetikleme

🔲 Not

J4-1 ve J4-2, normal çalışmada bağlı olmalıdır.

Jeneratör Giriş Kuru Kontağı

J5'in varsayılan işlevi jeneratör arayüzüdür ve J5'in pin 2'sini +24V güç kaynağına bağlar; jeneratörün sisteme bağlanmış olduğunun göstergesidir. Arayüz şeması Şekil 3-20'de, arayüz açıklaması ise Tablo 3.8'de gösterilmiştir.

Şekil 3-20 Durum arayüzü ve jeneratör bağlantısı şeması

Port	Adı	İşlevi
J5-1	+24V_DRY	+24V
J5-2	GEN_CONNECTED	Jeneratörün bağlantı durumu
J5-3	GND_DRY	+24V için güç toprağı

Tablo 3.8 Durum arayüzü ve je	eneratör bağlantısı açıklaması
-------------------------------	--------------------------------

Devre Kesici (BCB) Giriş Portu

J6 ve J7'nin varsayılan işlevi BCB'nin portları olmasıdır. Port şeması Şekil 3-21'de, açıklaması da Tablo 3.9'da yer almaktadır.

Şekil 3-21 BCB Portu Tablo 3.9 BCB portu acıklaması

Port	Adı	İşlevi						
J6-1	BCB_DRIV	BCB kontak sürücü, +24V gerilim sağlar, 20mA sürücü sinyali						

J6-2	BCB_Durum	BCB kontak durumu, BCB'nin normalde açık olan sinyaline bağlanır
J7-1	GND_DRY	+24V için güç toprağı
J7-2	BCB_Online	BCB online girişi (normalde açık), sinyal J7-1'e bağlandığı zaman BCB online'dır.

🔲 Not

Varsayılan ayarda, aux kontaklı bir devre kesici kullanıldığında, J6-2 ve J7-1 aux kontaklara bağlanır ve BCB'nin durum bilgisini alır. Bu işlevin devreye alınabilmesi için J7-1 ve J7-2 kısa devrelenmelidir.

Akü Uyarısı Çıkış Kuru Kontak Arayüzü

J8'in varsayılan işlevi, çıkış kuru kontak arayüzü olmasıdır. Bu işlev akü düşük gerilim uyarısı sağlamaktır. Akü gerilimi belirlenmiş değerden düşük veya yüksek ise harici bir kuru kontak sinyali röle aracılığı ile devreye girer. Arayüz şeması Şekil 3-22, açıklaması ise Tablo 3.10'dadır.

Şekil 3-12 Akü uyarısı kuru kontak arayüz şeması

Port	Adı	İşlevi		
18-1	BAT LOW ALARM NC	Akü uyarı rölesi (normalde kapalı) uyarı süresinde		
J8-1	DIM_LOW_MEMO	açık olacaktır		
J8-2	BAT LOW ALARM NO	Akü uyarı rölesi (normalde açık) uyarı süresinde		
		kapalı olacaktır		
J8-3	BAT_LOW_ALARM_GND	Müşterek terminal		

Table3.10 Akü uyarısı kuru kontak arayüz açıklaması

Genel Alarm Çıkış Kuru Kontak Arayüzü

J9'un varsayılan işlevi genel alarm çıkış kuru kontak arayüzü olmasıdır. Bir veya birden fazla uyarı tetiklendiği zaman, yardımcı bir kuru kontak sinyali bir rölenin izole olması yoluyla aktif olacaktır. Arayüz şeması Şekil 3-23'de, ve açıklaması ise Tablo 3.11'de gösterilmiştir.

Şekil 3-23 Entegre uyarı kuru kontak arayüz şeması Tablo 3.11 Genel alarm kuru kontak arayüz açıklaması

Port	Adı	İşlevi						
IO 1	GENERAL_ALARM_NC	Entegre uyarı rölesi (normalde kapalı) uyarı						
37-1		süresince açık olacaktır						
10_2	GENERAL ALARM NO	Entegre uyarı rölesi (normalde açık) uyarı						
J <i>J</i> -2		süresince kapalı olacaktır						
J9-3	GENERAL_ALARM_GND	Müşterek terminal						

Şebeke Kesilmesi Uyarısı Çıkış Kuru Kontak Arayüzü

34

J10'un varsayılan işlevi, şebeke kesikliği uyarısı için çıkış kuru kontak arayüzü olmasıdır. Şebeke kesildiği zaman, sistem bir şebeke kesikliği uyarı bilgisi gönderir ve bir rölenin izolasyonu yolu ile yardımcı bir kuru kontak sinyali sağlar. Arayüz şeması Şekil 3-24'de ve açıklaması Tablo 3.12'de gösterilmiştir.

Şekil 3-24 Şebeke kesikliği uyarısı kuru kontak arayüz şeması

Tablo	3.12	Şebeke	kesikliği	uyarısı	kuru	kontak	arayüz	açıklar	ması
		3	8-						

Port	Adı	İşlevi			
J10-1	UTILITY FAIL NC	Şebeke kesikliği uyarı rölesi (normalde kapalı)			
		Uyarı esnasında açılır			

Port	Adı	İşlevi
J10-2	UTILITY_FAIL_NO	Şebeke kesikliği uyarı rölesi (normalde açık) Uyarı esnasında kapanır
J10-3	UTILITY_FAIL_GND	Müşterek terminal

3.7.2 Haberleşme Arabirimleri

RS232, RS485 ve USB portu: Yetkili mühendisler tarafından devreye almada ve bakımda kullanılan seri veri sağlar, veya servis odasında ağ oluşturma veya entegre izleme sistemi için kullanılabilir.

SNMP: Mekanda kurulum veya haberleşmede kullanılır (Opsiyonel).

Akıllı kart arayüzü: Genişletme kuru kontak arayüzü (Opsiyonel).

4. KGK ve Modül Kontrol Paneli

4.1 Giriş

Bu bölüm, operatör kontrolü için gereken işlevleri ve talimatları, ve ekran panelini ayrıntılı olarak tanıtır. Ayrıca LCD ekran tiplerini, ayrıntılı menü, yönlendirme penceresi ve KGK alarm bilgileri de dahil olmak üzere LCD ekran bilgilerini açıklar.

4.2 Güç Modülü için LCD paneli

Güç modülü LCD panellerinin yapısı Şekil 4-1'de gösterilmiştir.

3: OFF (Kapatma) Düğmesi4: FUNC (İşlev) Düğmesi

Şekil 4-1 Güç modülü için kontrol ve ekran paneli

Operatör kontrol paneli üç işlevsel alana bölünmüştür: Durum göstergesi, kontrol ve çalıştırma düğmeleri ve LCD ekran.

4.2.1 LED Gösterge

LED göstergede, farklı renklerin bileşimi ve yanma süreleri ile durumları ve sorunları gösteren yeşil ve kırmızı renkler vardır. Renk bileşimleri Tablo 4.1'de gösterilmiştir.

No.	LED bileşimleri	Açıklama
1	Yeşil kısa süreli yanıp sönme 1 (1 sn. Yeşil, 2 sn. Kapalı)	Doğrultucu soft start'ta
2	Yeşil kısa süreli yanıp sönme 2 (2. sn. Yeşil, 1 sn. Kapalı)	Evirici soft start'ta
3	Yeşil orta süreli yanıp sönme (1 sn. Yeşil, 5 sn. Kapalı)	Güç modülü eviricisi beklemede
4	Yeşil uzun süreli yanıp sönme (2 sn. Yeşil, 10 sn. Kapalı)	Güç modülü derin uykuda (kapalı)
5	Sabit yeşil	KGK normal çalışıyor
6	Kırmızı ve Yeşil Değişimli (1 sn. Kırmızı, 5 sn. Yeşil)	Yük, uyarılarla eviriciden besleniyor (Akü yok, aküler deşarjda, aşırı yük vb.)
7	Sabit kırmızı	Fault (Arıza/Kısa Devre) nedeniyle Güç Modülü kapalı
8	Kırmızı orta süreli yanıp sönme (1 sn. Kırmızı, 5 sn. Kapalı)	Manuel veya izleme yazılımı ile kapatma
9	Kırmızı kısa süreli yanıp sönme (1 sn. Kırmızı, 1 sn. Kapalı)	Yukarıdakiler haricindeki durumlar

Tablo 4.1 Değişik renk bileşimlerinin durum ve sorun mesajları

4.2.2 Kontrol ve Çalıştırma Düğmeleri

Kontrol ve çalıştırma düğmeleri, farklı işlevleri olan FUNC (İşlev) ve OFF (Kapatma) düğmeleridir:

(a) FUNC düğmesi ekran sayfalarını değiştirmek için kullanılır;

(b) OFF düğmesinin asıl görevi, aşağıdaki işlemlerde güç modülünü kapatmaktır:

1) Etkinleştir: LCD panel -> Menü Çalıştırma -> Modül "OFF" düğmesini Etkinleştir

2) "OFF" düğmesine 3 saniye basın, güç modülü sistemden çıkacaktır.(c) "FUNC" düğmesi LCD ekranını yeniler.

4.2.3 LCD Ekran

LCD ekran, modül bilgilerini göstermek içindir ve yapısı Şekil 4-2'dedir.

Şekil 4-2 Modül LCD ekranı

Kullanıcılar, FUNC düğömesine basıp sayfaları çevirerek her güç modülünün bilgilerini görebilirler.

• üçgeni vurgulanmış:

Giriş bilgileri Sayı Gösterge Alanında görülür: 3-faz gerilim ve 3-faz akım.

• üçgeni vurgulanmış:

Çıkış bilgileri Sayı Gösterge Alanında görülür: 3-faz gerilim, 3-faz akım ve 3-faz yük yüzdesi.

- - POS üçgeni vurgulanmış:

Akü bilgileri Sayı Gösterge Alanında görülür: Akü pozitif gerilim, akü pozitif şarj/deşarj akımı ve grup pozitif gerilimi;

NEG üçgeni vurgulanmış:

Akü bilgileri Sayı Gösterge Alanında görülür: Akü negatif gerilim, akü negatif şarj/deşarj akımı ve grup negatif gerilimi.

• vurgulanmış:

Fault (arıza/kısa devre) ve uyarı kodları Sayı Gösterge Alanında dönüşümlü olarak görünüyor (3'den küçükse kısa tire olarak gösterilir). Kodların anlamları Tablo 4.2'de listelenmiştir.

Bir fault oluştuğunu gösterir.

- enerji çubuğu:
- (a) Yanıp sönme: Doğrultucu soft start;
- (b) Vurgulanmış: Doğrultucu normal çalışıyor;
- (c) Kapalı: Diğer durumlar.

- enerji çubuğu:
- (a) Yanıp sönme: Evirici başlatılıyor;
- (b) Vurgulanmış: Yük eviricide;
- (c) Kapalı: Diğer durumlar.

- enerji çubuğu:
- (a) Yanıp sönme: akü gerilimi düşük;
- (b) Vurgulanmış: Normal şarj;
- (c) Kapalı: Akü bağlı değil.

enerji çubuğu:

(a) Yanıyor: Deşarj modunda;

(b) Kapalı: akü bağlı değil veya şarj oluyor.

Birim: Gerilim (V), Akım (A), Yüzde (%).

Bir güç modülü sayfası çevrilince, diğerleri 2 saniye içinde güncellenirler.

Kodlar	Açıklama	Kodlar	Açıklama
16	Şebeke voltajı anormal	67	Akü polaritesi ters
18	Bypass faz sırası bozuk	69	Evirici korumada
20	Bypass voltajı anormal	71	Nötr bağlantısı çıkmış
28	Bypass frekansı tolerans dışı	74	Modül manuel olarak kapatıldı
30	1 saat içindeki aktarma zamanları (eviriciden bypass'a) limiti aşıyor.	81	Akü veya şarj birimi arızası
32	Çıkışta kısa devre	83	Kayıp N+X redundancy (yedeklilik)
34	Akü'de EOD	85	EOD sistemi engellenmiş
38	Akü testi arızası	93	Evirici IO CAN arızası
41	Akü bakımı arızası	95	Veri CAN arızası
47	Doğrultucu arızası	97	Güç paylaşma arızası
49	Evirici arızası	109	Evirici köprüsü açık
51	Doğrultucu aşırı ısınma	111	Isı farkı limit üstünde
53	Fan arızası	113	Giriş akımı dengesiz
55	Çıkış aşırı yük	115	DC barasında aşırı gerilim
57	Çıkış aşırı yük süre bitimi	117	Doğrultucu soft start arızası
59	Evirici aşırı ısınma	119	Röle açık
61	KGK evirici engellenmiş	121	Röle kısa devre
65	Düşük akü	127	Eviriciye manuel aktarma

Tablo 4.2 fault (arıza/kısa devre) ve uyarı kodları

4.3 KGK operatör paneli

Kabinin operatör kontrol ve ekran panelinin yapısı Şekil 4-3'dedir.

Kabin LCD paneli üç işlevsel alana bölünmüştür: LED gösterge, kontrol ve çalıştırma düğmeleri ve LCD dokunmatik ekran.

4.3.1 LED Göstergeler

Panelde, çalışma durumunu ve arızaları gösteren 6 LED vardır. (Bakın Şekil 4-3). Göstergelerin açıklamaları Tablo 4.3'dedir

Gösterge	Durum	Açıklama	
	Sabit yeşil	Tüm modüllerde doğrultucu normal	
Doğrultucu	Yanıp sönen	En az bir modülde doğrultucu normal, sebeke normal	
	yeşil	En az oli modulue dogrunded normal, şebeke normal	
	Sabit kırmızı	Doğrultucu arızası	
gostergesi	Yanıp sönen	Sebeke en az bir modülde normal	
Akü göstergesi	kırmızı		
	Kapalı	Doğrultucu çalışmıyor	
	Sabit yeşil	Aküler şarj oluyor	
	Yanıp sönen	Aküler deşarj oluyor	
	yeşil		
	Sobit kirmizi	Aküler anormal (akü arızası, akü yok veya akü ters) veya al	
	Sault Kirinizi	çevirici anormal (arıza, aşırı akım veya aşırı 1s1), EOD	
	Yanıp sönen	Akü voltajı dücük	
	kırmızı		

Tablo 4.3 Göstergelerin durum açıklamaları

Gösterge	Durum	Açıklama
	Kapalı	Akü ve akü çevirici normal, akü şarj etmiyor
	Sabit yeşil	Yük bypasstan besleniyor
Bypass	Sabit kırmızı	Bypass anormal veya normal aralığı dışında, veya statik bypass anahtarı arızalı
göstergesi	Yanıp sönen kırmızı	Bypass voltajı anormal
	Kapalı	Bypass normal
	Sabit yeşil	Yük eviriciden besleniyor
	Yanıp sönen	En az bir modülde evirici açık, başlamada, senkron veya
	yeşıl	beklemede (ECO modu)
Evirici göstergesi	Sabit kırmızı	En az bir modülde sistem çıkışı eviriciden beslenmiyor, evirici arızası.
	Yanıp sönen kırmızı	En az bir modülde sistem çıkışı eviriciden besleniyor, evirici arızası.
	Kapalı	Evirici tüm modüllerde çalışmıyor
	Sabit yeşil	KGK çıkışı açık ve normal
Yük	Sabit kırmızı	KGK aşırı yük süresi bitti, veya çıkış kısa devre, veya çıkışta güç beslemesi yok
göstergesi	Yanıp sönen kırmızı	KGK çıkışında aşırı yük
	Kapalı	KGK çıkışı yok
Durum	Sabit yeşil	Normal çalışma
göstergesi	Sabit kırmızı	Arızalı

Tablo 4.4'de gösterildiği gibi, KGK'nın çalışma süresinde iki farklı sesli alarm vardır. Tablo 4.4 Sesli alarm açıklamaları

Alarm	Açıklama	
İki kısa ve bir uzun	Sistem de genel hir emze verken (ömečin, AC emzegi)	
alarm	Sistemde genei bir ariza varken (ornegin: AC arizasi),	
Sürekli alarm	Sistemde ciddi arızalar varken (örneğin: sigorta atmış veya donanım	
Surekii alarin	arızası)	

4.3.2 Kontrol ve Çalıştırma Düğmeleri

Kontrol ve çalıştırma düğmeleri 2, 10, 11 ve 12'den oluşan ve LCD dokunmatik ekranla birlikte kullanılan dört düğmedir (Bak. Şekil 4-3). İşlevler Tablo 4.5'de açıklanmıştır.

İşlev Düğmesi	Açıklama			
EDO	Uzun basıldığında, yük gücünü keser (doğrultucuyu, eviriciyi, statik			
LFU	bypass'ı ve aküleri kapatır)			
DVD	Uzun basıldığında, bypass'a aktarır (Etkinleştirmek için arka			
DIF	kapaktaki düğmeyi yukarı itin, bak. Şekil 5.2)			
INV	Uzun basıldığında, eviriciye aktarır			
MUTE	Alarm zilini açık kapamak için uzun basın			

Tablo 4.5 Kontrol ve çalıştırma düğmelerinin işlevleri

Bypass frekansı tolerans dışında ise, bypass'dan eviriciye aktarmada (10ms'den az bir) kesilme süresi olur.

4.3.3 LCD dokunmatik Ekran

Kullanıcılar, kullanıcı dostu olan LCD dokunmatik ekran ile bilgilere erişebilirler, KGK'yı çalıştırabilirler ve parametreleri ayarlayabilirler.

İzleme sistemi kendi kendini test etmeye başladığı zaman, sistem, 'hoş geldiniz' penceresinden sonra ana sayfaya geçer. Ana sayfa Şekil 4.4'de gösterilmiştir.

Şekil 4-4 Ana sayfa

Ana sayfa, Status bar (durum çubuğu), Information display (Bilgi ekranı), warning information (uyarı bilgileri ve main menu (ana menü)'den oluşur.

Durum çubuğu

Durum çubuğu, ürünün modelini, kapasitesini, çalışma modunu, güç modülü sayısını ve sistem saatini içerir.

• Uyarı Bilgileri

Kabinin uyarı bilgilerini gösterir.

Bilgi Ekranı

Kullanıcılar, kabinin bilgilerini bu alanda kontrol edebilirler.

Bypass gerilimi, şebeke giriş gerilimi, akü gerilimi ve çıkış voltajları ölçüm aleti formunda gösterilir.

Yükler, yüzde olarak ve çubuk grafik formunda görülür. Yeşil alan %60'dan küçük bir yükü, sarı alan %60-%100 arasındaki bir yükü, ve kırmızı alan da %100'ü aşan bir yükü temsil eder.

Enerji akışı şeması, gücün akışını yansıtır.

Ana Menü

Ana menü, Cabinet (Kabin), Module (Modül), Setting (Ayar), Log (kayıt defteri), Operate (Çalıştırma) ve Scope (Osiloskop)'u içerir. Kullanıcılar, ana menü yoluyla KGK'yı çalıştırabilirler, kontrol edebilirler ve tüm ölçülmüş parametreleri tarayabilirler.

Ana menü ağacının yapısı Şekil 4-5'de gösterilmiştir.

Şekil 4-5 Menü ağacının yapısı

4.4 Ana Menü

Ana menü, Cabinet (Kabin), Module (Modül), Setting (Ayar), Log (kayıt defteri), Operate (Çalıştırma) ve Scope (Osiloskop)'u içerir ve aşağıda ayrıntılı olarak açıklanmıştır.

4.4.1 Cabinet (Kabin)

(Ekranın alt solunda olan) simgesine dokunun, ve sistem, Şekil 4-6'da görüldüğü gibi Kabin sayfasına girer.

Şekil 4-6 Kabin

Kabin sayfası, title (başlık), information display (bilgiler ekranı), version (sürüm), running status (çalışma durumu) ve submenu (alt menü) bölümlerinden oluşur. Bölümler aşağıda açıklanmıştır.

Başlık

Seçilmiş olan alt menünün bilgisini verir.

• Çalışma durumu

Küçük akım yolu şemasındaki kutular, KGK'deki çeşitli güç akışlarını temsil ederler ve o andaki çalışma durumunu gösterirler. (Yeşil kutu bloğun normal çalıştığını, beyaz kutu o bloğun olmadığını ve kırmızı kutu ise bloğun olmadığını veya arızalı olduğunu gösterir).

• Sürüm Bilgisi

Kabin ve izleyicinin LCD sürüm bilgisi.

Alt Menü

Bypass, Main (Şebeke), Output (Çıkış), load (yük) ve battery (Akü) alt menülerini içerir.

• Bilgiler ekranı

Her bir alt menü öğesinin bilgilerini gösterir. Her alt menünün arayüzü Şekil 4-7'de gösterimiştir.

(d) Akü Arayüzü

Kabinin alt menüleri ayrıntıları aşağıdaki Tablo 4.6'da açıklanmıştır.

Alt Menü Adı	İçerik	Anlamı
	V	Faz voltajı
Main (Calcalar)	А	Faz akımı
Main (Şebeke)	Hz	Giriş frekansı
	PF	Güç faktörü
	V	Faz voltajı
D	А	Faz akımı
Bypass	Hz	Bypass frekansı
	PF	Güç faktörü
	V	Faz voltajı
	А	Faz akımı
Output (Çıkış)	Hz	Çıkış frekansı
	PF	Güç faktörü
	kVA	Sout: Görülen Güç
Lood (Vält)	kW	Pout: Aktif Güç
Load (Yuk)	kVar	Qout: Reaktif güç
	%	Yük (KGK yükünün yüzdesi)
	V	Akü pozitif/negatif Gerilimi
	А	Akü pozitif/negatif Akımı
	Capacity (%)	Yeni akü kapasitesi ile karşılaştırma yüzdesi
	Remain T (Min)	Kalan aküden besleme süresi
Akü (Akü)	Akü (°C)	Akü Isısı
	Ambient (°C)	Ortam Isisi
	Total Work T	Toplam çalışma süresi
	Total Discharge T	Toplam deşarj süresi

	Tablo 4.6 Kabini	n alt menül	lerinin acıl	klamaları
--	------------------	-------------	--------------	-----------

4.4.2 Module (Modül)

(Ekranın alt solunda olan) simgesine basın, ve sistem, Şekil 4-8'de gösterildiği gibi Modül sayfasına girer.

Şekil 4.8 Modül

Modül sayfası, title (başlık), information display (bilgiler ekranı), power module information (güç modülü bilgileri), version (sürüm), running status (çalışma durumu) ve submenu (alt menü) bölümlerinden oluşur. Bölümler aşağıda açıklanmıştır.

• Başlık

Seçilmiş olan güç modülünün alt menüsünün başlığını sunar.

• Bilgiler ekranı

Her bir alt menü öğesinin bilgilerini gösterir.

• Güç modülü bilgileri

Kullanıcılar, "Bilgiler ekranı" bölümünde bilgilerini görmek istedikleri güç modülünü seçebilirler.

Küçük akım şemalarındaki renkler çeşitli güç modülü akışlarını temsil ederler ve o andaki çalışma durumunu gösterirler.

(a) Yeşil kutu modülün normal çalıştığını gösterir,

(b) Siyah, modülün geçersiz olduğunu gösterir,

(c) Kırmızı, modülün olmadığını veya arızalı olduğunu gösterir.

Örneğin 5 no.lu modüle bakalım. KGK'nın normal modda ve doğrultucu ve eviricinin normal çalıştıklarını göstermektedir. Aküler bağlı değildir.

• Sürüm Bilgileri

Seçili modülün doğrultucu ve evirici sürüm bilgileri.

• Alt Menü

Alt Menü, Input (Giriş), Output (Çıkış), Load (Yük), INFO (Bilgi) ve S-CODE (S-Kodu) içerir.

Kullanıcılar, her alt menünün simgesine doğrudan dokunarak arayüzüne girebilirler. Alt menünün tüm arayüzleri Şekil 4-9'da gösterilmiştir.

	5 # MODULE OUTPUT	5	# MODULE	LOAD	
10 🖓 🖓	A B C	10 😁	Α	В	С
9	100 180 100 180 100 180	9	150%	150%	150%
8	50 260 50 260 50 260 50 260	8	100%	100%	100%
7 🔤	0 V 300 0 V 300 0 V 300	7 🔤	60%	60%	60%
6 28			0.0		
			0.0 %	0.0 %	0.0 %
4 8888 =		4 8 8 8 8 2			
3 8 8 8 8 💾	0.42 PE 0.32 PE 0.46 PE		221 0 V	222.5 V	222.5 V
2					
1					
REC VER: V 33.0.051 INV VER: V 33.0.053	INPUT OUTPUT LOAD INFO. S-CODE	REC VER: V 33.0.051 IN V VER: V 33.0.053		JT LOAD I	NFO. S-CODE
Home Cabinet	Aconte Setting Log Operate Scope	Home Cabinet	II II Setting		erate Scope
(a)	Çıkış Arayüzü	(b) Y	Yük Arayi	üzü	
5	# MODULE INFORMATION		5 # MODULE	S-CODE	
10 22	(BATT+: 0.0 V 0.0 A	10 5	1221 -0001 -00	000 -0120 0000 -	0000 -1102 -1000
9	⊘BATT-: 0.0 ∨ 0.0 A	9	0000 -0000 -00	000 -0000 0000 -	0000 -0000 -0000
8 22	0) @ Bus: 400.4 ∨ 398.9 V	8	0000-0000-00	000-0000 0000-000	0000-0000-0000
7 📴	(Charger: 0.0 V 0.0 V	7	1221 -0001 -00	000-0120 1000 -	-1101 -1111 -1111
6 -	GFan Time: 0 H	6	1) 0000 -0000 -00	000 -0000 0000 -	0000 -0000 -0000
5 88 8 8	Capacitor Time: 0 H	5 8 8 8 8	2) 0000 -0000 -00	000 -0000 0000 -	0000 -0000 -0000
4 8 8 8 8 ==	@Inlet Temperature: 21.0°C	4 0 8 0	3 0000 -0000 -00	000-0000 0000-	0000 -0000 -0000
3 & & & &	BOutlet Temperature: 23.3 °C	3 8 8 8 8	0000 -0000 -00	000-0000 0000-	-0000 -0000 -0000
2	@REC IGBT Temperature(A/B/C): 22.5 / 20.0 / 20.0 °C	2	0000 -0000 -00	000 -0000 0000 -	0000 -0000 -1000
1	@INV IGBT Temperature(A/B/C): 25.0 / 20.0 / 25.0 °C	1	9) 0000 -0000 -00	000 -1000 0000 -	0011 -1100 -0100
REC VER: V 33.0.051 INV VER: V 33.0.053	INPUT OUTPUT LOAD INFO. S-CODE	REC VER: V 33.0.051 INV VER: V 33.0.053		UT LOAD	INFO. S-CODE
Home Cabinet	Abdulo	Home Cabinet	Setting		perate Scope
(b)	Arayüz Bilgileri	(d)	S-Code A	Arayüzü	

Şekil 4-9 Modül menüsü

Modülün alt menüle	ri aşağıdaki Tabl	o 4.7'de ay	yrıntılı ol	arak açık	lanmıştır.
	Tablo 4.7 Modülü	n tüm alt me	enülerinin	acıklamala	arı

Alt Menü Adı	İçerik	Anlamı		
	V	Seçili modülün Giriş faz voltajı		
	А	Seçili modülün Giriş faz akımı		
înput (Giriş)	Hz	Seçili modülün Giriş frekansı		
	PF	Seçili modülün Giriş güç faktörü		
	Seçili modülün Çıkış faz voltajı			
Orstanst (Culous)	А	Seçili modülün Çıkış faz akımı		
Output (Çıkış)	Hz	Seçili modülün Çıkış frekansı		
	PF	Seçili modülün Çıkış güç faktörü		
	V	Seçili modülün yük voltajı		
T 1 (TTH 1)	%	Yük (Seçili güç modülünün yüzdesi)		
Load (Yuk)	KW	Pout: Aktif Güç		
	KVA	Sout: Görünen Güç		
	BATT+(V)	Akü Voltajı (pozitif)		
	BATT-(V)	Akü Voltajı (negatif)		
Information (Bilgi)	BUS(V)	Bara Voltajı (Pozitif ve Negatif)		
mormation (Brigi)	Charger(V)	Şarj Birimi Voltajı (Pozitif ve Negatif)		
	Fan Time (Fan	Seçili güç modülünün fanının toplam çalışmı		
	Süresi)	süresi		

Alt Menü Adı	İçerik	Anlamı
	Giriş Derecesi (°C)	Seçili güç modülünün giriş ısısı
	Çıkış Derecesi (°C)	Seçili güç modülünün çıkış ısısı
S-code	Arıza Kodu	Bakım personeli için

4.4.3 Settings (Ayarlar)

(Ekranın altında olan) simgesine basın ve sistem, Şekil 4-10'da görüldüğü gibi Ayarlar sayfasına girer.

47			DATE & TIME	
Date Format				
YY-MM-DD	YY-MM-DD MM-DD-YY DD-MM-YY		LANGUAGE	
	Time Setting		сомм.	
Current Time 2014-02-14 11:28:42			USER	>Submenus
Please	Confirm Settings	✓×	BATTERY	
			SERVICE	
			RATE	
			CONFIGURE	
Home Cabinet	Module		erate Scope	

♦ Setting interface

Şekil 4-10 Ayarlar menüsü

Alt menüler Ayarlar sayfasının sağ tarafında listelenmiştir. Kullanıcılar ilgili simgeye dokunarak ayar arayüzlerinin her birine girebilirler. Alt menüler aşağıdaki Tablo 4.8'de ayrıntılı olarak açıklanmıştır.

1 auto 4.0 Ayanan in ner an menusunun açıklaması	Tablo 4.8 A	yarların	her alt	menüsünün	açıklaması
--	-------------	----------	---------	-----------	------------

Alt Menü Adı	İçerik	Anlamı	
Data & Tima	Tomin formate avon	Üç format: (a) yıl/ay/gün, (b) ay/gün/yıl,	
(Tarih ya Saat)	Tarin Tormati ayari	(c) gün/ay/yıl	
(Tarin ve Saat)	Zaman ayarı	Zamanı ayarlamak	
Şimdiki dil Kullanılan dil		Kullanılan dil	
		Basitleştirilmiş Çince ve İngilizce	
(D1I)	Dil seçimi	seçilebilir (Ayar, dil simgesine basar	
		basmaz derhal devreye girer)	
	Aygıt Adresi	Haberleşme adresini ayarlama	
		SNT Protokolü, ModBus Protokolü, YD/T	
COMM.	RS232 Protokol Seçimi	Protokolü ve Dwin (Fabrika kullanımı	
		için)	
	Bilgi İletişim Hızı (Baud	SNT, ModBus ve YD/T iletişim hız	
	rate)	ayarları	
	Modhus Modu	Modbus ayar modu: ASCII ve RTU	
	Modus Modu	seçilebilir	

Alt Menü Adı	İçerik	Anlamı	
	Modbus paritesi	Modbus paritesini ayarlama	
	Çıkış voltaj Ayarı	Çıkış Voltajını ayarlama	
USER (Kullanıcı)	Bypass Voltajı Sınırlı Yükseltme	Bypass için sınırlı çalışma voltajı yükseltme, ayarlanabilir: +%10, +%15, +%20, +%25	
	Bypass Voltajı Sınırlı Düşürme	Bypass için sınırlı çalışma voltajı düşürme, ayarlanabilir: -%10, -%15, -%20, -%30, -%40	
	Bypass Frekansı Sınırlama	İzin verilen Bypass çalışma Frekansı, Ayarlanabilir: +-1Hz, +-3Hz, +-5Hz	
	Toz Filtresi Bakım Zamanı	Toz Filtresi Bakım Zamanını Ayarlama	
	Akü Sayısı	Akü sayısını ayarlama (12V)	
	Akü Kapasitesi	Akünün AH değerini ayarlama	
	FLOAT Şarj Voltajı/Göz	Akü gözü için FLOAT Voltajı ayarlama (2V)	
	Boost Şarj Voltajı/Göz	Akü gözü için boost Voltajı ayarlama (2V)	
	EOD (Deşarj Sonu) Voltajı/Göz,@0.6C Akım	Akü gözü için EOD voltajı,@0.6C akım	
BATTERY (Akü)	EOD (Şarj Sonu) Voltajı/Göz,@0.15C Akım	Akü gözü için EOD voltajı,@0.15C akım	
	Şarj Akımı Yüzde Sınırı	Şarj akımı (nominal akımın yüzdesi)	
	Akü Isı Dengeleme	Akü ısı dengeleme katsayısı	
	Boost Şarj Zaman Sınırı	Boost şarj zamanını ayarlama	
	Otomatik Boost Zamanı	Otomatik boost zamanını ayarlama	
	Otomatik Bakım Deşarj Zamanı	Otomatik bakım deşarj zamanını ayarlama	
SERVICE (Servis)	Sistem Modu	Sistem modunu ayarlama: Tekli, paralel, Tekli ECO, paralel ECO, LBS, paralel LBS	
RATE (Değerler)	Nominal parametre yapılandırma	Fabrika kullanımı için	
CONFIGURE (Yapılandırma)	Sistem yapılandırma	Fabrika kullanımı için	

🔲 Not

- Ayarların yapılandırılmaları için kullanıcılar çeşitli olanaklara sahiptirler: (a) Tarih ve Zaman, LANGUAGE ve COMM için kullanıcılar parola gerekmeksizin ayar yapabilirler. (b) USER için, tek kademeli bir parola gerekir ve ayar devreye alma mühendisi tarafından yapılmalıdır (c) Battery ve SERVICE için, 2 kademeli bir parola gerekir ve servis personeli tarafından ayarlanır. (d) RATE ve CONFIGURE için 3 kademeli parola gerekir ve ancak fabrikada ayarlanabilir.
- "C", Amper değerini temsil eder. Örneğin, akü 100AH ise, C=100A'dır.

Menü veya izleme yazılımı ile belirlenmiş akü sayısının gerçekten bağlanmış olan akü sayısına aynen eşit olduğundan emin olun. Aksi takdirde akülere veya KGK'ya ciddi hasara neden olabilirsiniz.

4.4.4 Log

(Ekranın altında olan) simgesine basın ve sistem, Şekil 4-11'de göründüğü gibi, arayüzün Log sayfasına girecektir. Log, ters kronolojik sıra ile listelenmiştir (yani, ekranda #1 ile birinci olan kayıt son log kaydıdır ve bu kayıt, olayları, uyarıları ve arıza bilgilerini, oluştukları ve giderildikleri tarih ve saati gösterir.

NO.	M# EVENTS	TIME
1	0 # Load On UPS-Set	2014 - 2 - 14 16 26:1
2	4 # Module Inserted-Set	2014 - 2 - <u>1</u> 4 16 :24: 27
3	0 # Byp Freq Over Track-Set	2014 - 2 - 14 16 :22:31
4	0 # Load On Bypass-Set	2014 - 2 - 14 16 :21 :33
5	0 # Bypass Volt Abnormal-Set	2014 - 2 - 14 16 :21: 33
6	0 # Load On Bypass-Set	2014 - 2 - 14 16 :19:41
7	0 # No Load-Set	2014 - 2 - 14 16 :18:45
8	4 # Load On Bypass-Set	2014 - 2 - 14 16 :18:45
9	0 # Byp Freq Over Track-Set	2014 - 2 - 14 16 :18:45
10	4 # Module-Exit-Set	2014 - 2 - 14 16 :26: 1
Total Lo	ig Items 29	
Home	Cabinet Module Setting	Operate Scope

Şekil 4-11 Log menüsü

Tabloya kaydedilmiş her olay, sıra no.sunu, olayın içeriğini ve oluştuğu anın tarih damgasını içerir. Şekildeki kırımızı ile çerçevelenmiş kutu gibi.

- NO. (Sıra Numarası) Olayın sıra no.su.
- M# EVENTS (Olayın içeriği)

Olayların, uyarıların ve arızaların bilgilerini gösterir. (0# olayın kabinde olduğu, n# ise bilginin n no.lu güç modülünden gönderildiği anlamına gelir.)

- TIME (Olayın Zamanı) Olayın oluştuğu an.
- Total Log Items (Toplam Log Girişleri)

Toplam olay sayısını gösterir. Sistem 895 olay kaydedebilir. Sayı 895'i aşarsa, sistem en eski olayları silecektir.

> Olay bilgilerini kontrol etmek için liste sayfasını aşağı yukarı kaydırın. Aşağıdaki Tablo tüm olay türlerini kısa açıklamaları ile göstermektedir. Tablo 4.9 Olaylar listesi

Dizilim Sırası	LCD Ekran	Açıklama
1	Load On KGK-Set	Yük KGK'da
2	Load On Bypass-Set	Yük Bypass'ta

3	No Load-Set	Yük Yok (Çıkış Gücü Kayıp)		
4	Battery Boost-Set	Şarj Birimi Akü Voltajını Boost Şarj Ediyor		
5	Battery Float-Set	Şarj Birimi Akü Voltajına FLOAT Şarj Uyguluyor		
6	Battery Discharge-Set	Akü Deşarj oluyor		
7	Battery Connected-Set	Akü Kabloları Bağlı		
8	Battery Not Connected-Set	Akü Kabloları Bağlı Değil		
9	Maintenance CB Closed-Set	Bakım CB'si Kapalı		
10	Maintenance CB Open-Set	Bakım CB'si Açık		
11	EPO-Set	Acil Kapanma		
12	Module On Less-Set	Geçerli Evirici kapasitesi yük kapasitesinden düşük		
13	Module On Less-Clear	Yukarıdaki olay giderildi		
14	Generator Input-Set	AC Giriş Kaynağı Jeneratör		
15	Generator Input-Clear	Yukarıdaki olay giderildi		
16	Utility Abnormal-Set	Şebeke Anormal		
17	Utility Abnormal-Clear	Yukarıdaki olay giderildi		
18	Bypass Sequence Error-Set	Bypass voltaj Sekansı ters		
19	Bypass Sequence Error-Clear	Yukarıdaki olay giderildi		
20	Bypass Volt Abnormal-Set	Bypass Voltajı Anormal		
21	Bypass Volt Abnormal-Clear	Yukarıdaki olay giderildi		
22	Bypass Module Fail-Set	Bypass Modulü Çalışmıyor		
23	Bypass Module Fail-Clear	Yukarıdaki olay giderildi		
24	Bypass Overload-Set	Bypass'ta Aşırı Yük		
25	Bypass Overload-Clear	Yukarıdaki olay giderildi		
26	Bypass Overload Tout-Set	Bypass Aşırı Yük Zaman Aşımı		
27	Byp Overload Tout-Clear	Yukarıdaki olay giderildi		
28	Byp Freq Over Track-Set	Bypass Frekans Sınırı Aşıldı		
29	Byp Freq Over Track-Clear	Yukarıdaki olay giderildi		
30	Exceed Tx Times Lmt-Set	Aktarma süreleri (eviriciden bypass'a) bir saat sınırını aşıyor.		
31	Exceed Tx Times Lmt-Clear	Yukarıdaki olay giderildi		
32	Output Short Circuit-Set	Çıkış kısa devre		
33	Output Short Circuit-Clear	Yukarıdaki olay giderildi		
34	Battery EOD-Set	Akü Deşarj Sonu		
35	Battery EOD-Clear	Yukarıdaki olay giderildi		
36	Battery Test-Set	Akü Testi Başlıyor		
37	Battery Test OK-Set	Akü Testi OK		
38	Battery Test Fail-Set	Akü Testi başarısız		
39	Battery Maintenance-Set	Akü Bakımı Başlıyor		
40	Batt Maintenance OK-Set	Akü Bakımı başarılı		

41	Batt Maintenance Fail-Set	Akü Bakımı başarısız	
42	Module Inserted-Set	N# Güç Modülü sisteme dahil oldu	
43	Module Exit-Set	N# Güç Modülü sistemden ayrıldı.	
44	Rectifier Fail-Set	N# Güç Modülü Doğrultucu Arızası	
45	Rectifier Fail-Clear	Yukarıdaki olay giderildi	
46	Inverter Fail-Set	N# Güç Modülü Evirici Arızası	
47	Inverter Fail-Clear	Yukarıdaki olay giderildi	
48	Rectifier Over TempSet	N# Güç Modülü Doğrultucu Aşırı Isı	
49	Rectifier Over TempClear	Yukarıdaki olay giderildi	
50	Fan Fail-Set	N# Güç Modülü Fan Arızası	
51	Fan Fail-Clear	Yukarıdaki olay giderildi	
52	Output Overload-Set	N# Güç Modülü Çıkış Aşırı Yük	
53	Output Overload-Clear	Yukarıdaki olay giderildi	
54	Inverter Overload Tout-Set	N# Güç Modülü Evirici Aşırı Yük Zaman Aşımı	
55	INV Overload Tout-Clear	Yukarıdaki olay giderildi	
56	Inverter Over TempSet	N# Güç Modülü Evirici Aşırı Isı	
57	Inverter Over TempClear	Yukarıdaki olay giderildi	
58	On UPS Inhibited-Set	Bypass'tan KGK'ya (evirici) sistem transferi engelli	
59	On UPS Inhibited-Clear	Yukarıdaki olay giderildi	
60	Manual Transfer Byp-Set	Bypass'a manuel aktarma	
61	Manual Transfer Byp-Set	Bypass'a manuel aktarma iptal	
62	Esc Manual Bypass-Set	Bypass'a aktarmadan manuel kaçış	
63	Battery Volt Low-Set	Akü Voltajı Düşük	
64	Battery Volt Low-Clear	Yukarıdaki olay giderildi	
65	Battery Reverse-Set	Akü kutupları (pozitif ve negatif) ters	
66	Battery Reverse-Clear	Yukarıdaki olay giderildi	
67	Inverter Protect-Set	N# Güç Modülü Evirici Korumada (Evirici Voltajı	
07		Anormal veya Güç besleme DC barasında)	
68	Inverter Protect-Clear	Yukarıdaki olay giderildi	
69	Input Neutral Lost-Set	Şebeke Nötr Kayıp	
70	Bypass Fan Fail-Set	Bypass Modülü Fan Arızası	
71	Bypass Fan Fail-Clear	Yukarıdaki olay giderildi	
72	Manual Shutdown-Set	N# Güç Modülü Manuel Kapama	
73	Manual Boost Charge-Set	Manuel Akü Boost Şarjı	
74	Manual Float Charge-Set	Manuel Akü FLOAT Şarjı	
75	UPS Locked-Set	KGK'nin kapanması engelli	
76	Parallel Cable Error-Set	Paralel kablo hatası	
77	Parallel Cable Error-Clear	Yukarıdaki olay giderildi	
78	Lost N+X Redundant	N+X Redundant (Yedeklilik) Kayıp	
79	N+X Redundant Lost-Clear	Yukarıdaki olay giderildi	

Modüler KGK 20-600kW Kullanıcı El Kitabı

80	EOD Sys Inhibited	Akü EOD durumunda (deşarj sonu) sistem beslemesi engellenmis	
81	Power Share Fail-Set	Güç paylaşımı dengede değil	
82	Power Share Fail-Clear	Yukarıdaki olay giderildi	
83	Input Volt Detect Fail-Set	Giriş Voltajı anormal	
84	Input Volt Detect Fail-Clear	Yukarıdaki olay giderildi	
85	Battery Volt Detect Fail-Set	Akü Voltajı anormal	
86	Batt Volt Detect Fail-Clear	Yukarıdaki olay giderildi	
87	Output Volt Fail-Set	Çıkış Voltajı anormal	
88	Output Volt Fail-Clear	Yukarıdaki olay giderildi	
89	Outlet Temp. Error-Set	Çıkış Isısı anormal	
90	Outlet Temp. Error-Clear	Yukarıdaki olay giderildi	
91	Input Curr Unbalance-Set	Giriş akımı dengeli değil	
92	Input Curr Unbalance-Clear	Yukarıdaki olay giderildi	
93	DC Bus Over Volt-Set	DC barada aşırı Voltaj	
94	DC Bus Over Volt-Clear	Yukarıdaki olay giderildi	
95	REC Soft Start Fail-Set	Doğrultucu yeniden başlatma başarısız	
96	REC Soft Start Fail-Clear	Yukarıdaki olay giderildi	
97	Relay Connect Fail-Set	Röle, açık devrede	
98	Relay Connect Fail-Clear	Yukarıdaki olay giderildi	
99	Relay Short Circuit-Set	Röle kısa devreli	
100	Relay Short Circuit-Clear	Yukarıdaki olay giderildi	
101	No Inlet Temp. Sensor-Set	Giriş ısı sensörü bağlı değil veya anormal	
102	No Inlet Temp Sensor-Clear	Yukarıdaki olay giderildi	
103	No Outlet Temp. Sensor-Set	Çıkış ısı sensörü bağlı değil veya anormal	
104	No Outlet TmpSensor-Clear	Yukarıdaki olay giderildi	
105	Inlet Over TempSet	Girişte aşırı 181	
106	Inlet Over TempClear	Yukarıdaki olay giderildi	

📔 Not

Sözcüklerin farklı renkleri farklı olay düzeylerini temsil eder:

- (a)Yeşil, bir olay olur;
- (b)Gri, olay olur ve ardından giderilir;
- (c)Sarı, uyarı olur;
- (d) Kırmızı, arıza olur.

4.4.5 Operate (Çalıştırma)

(Ekranın altında olan) simgesine dokunun ve sistem, Şekil 4-12'de görüldüğü gibi, "Çalıştırma" sayfasına girer.

Şekil 4-12 Çalıştırma menüsü

"Calıştırma" menüsünde FUNCTION BUTTON (İşlev Düğmesi) ve TEST COMMAND (Test Komutları) bulunur. İçerik ayrıntıları aşağıda açıklanmıştır.

FUNCTION BUTTON (İŞLEV DÜĞMESİ)

• ESC Mute (Zili Kes veva Yenile)

veya simgelerine dokunarak zili Sessize alın veya Yenileyin.

• Fault Clear (Ariza Temizle)

simgesine dokunarak arızaları temizle.

• Transfer Bypass (Bypass'a Aktar veya Bypass'dan Çık)

veva veva simgelerine dokunarak bypass moduna geçin veya bu moddan çıkın.

• Transfer to Inverter (Eviriciye Aktar)

simgesine dokunarak bypass modunu Evirici Moduna aktarın.

• Enable Module "OFF" Button (Modül "Kapama" Düğmesini Etkinleştir) Enable Module "OFF" Button simgesine dokunarak Güç Modülünü kapama işlevini etkinleştirin.

• Reset Battery History Data (Akü Tarihçe Verisini Sıfırla)

+ simgesine dokunarak akü tarihçe verisini sıfırlayın. Veri, deşarj zamanlarını, çalıştığı gün sayısını ve deşarj süresini içerir.

• Reset Dust filter Using Time (Toz Filtresi Kullanım Zamanını Sıfırla)

P simgesine dokunarak toz filtresi kullanım verisini sıfırlayın. Veri, kullanım gün sayısını ve bakım zamanı süresini içerir.

TEST COMMAND (TEST KOMUTLARI)

• Battery Test (Akü Testi)

simgesine dokunarak, akülerin durumunu kontrol etmek için sistemi Akü moduna aktarın. Bypass'ın normal çalıştığından ve akü kapasitesinin %25'den daha az olmadığından emin olun.

• Battery Maintenance (Akü Bakımı)

Sistem, simgesine dokunarak Akü moduna aktarılır. Bu işlev akülere bakım yapmak için gereklidir ve bypass'ın normal ve akülerin en az %25 kapasitede olmasını gerektirir.

Battery Boost (Akü Boost)

Sistem, simgesine dokunarak boost şarja başlar.

• Battery Float (Akü FLOAT)

÷ ÷ V

Sistem, Battery Float simgesine dokunarak FLOAT şarja başlar.

• Stop Test (Testi Durdur)

singesine dokunarak sistemin akü testini veya akü bakım işlemini durdurması sağlanır.

4.4.6 Scope (Osiloskop)

(Ekranın sağ altında olan) simgesine dokunun ve sistem, Şekil 4-13'de görüldüğü gibi, Osiloskop sayfasına girer.

Şekil 4-13 Osiloskop Menüsü

Kullanıcılar, arayüzün solundaki simgelere basarak, çıkış gerilimi, çıkış akımı ve bypass gerilimi dalgalarını görebilirler. Dalga görüntülerine yaklaşıp uzaklaşabilirsiniz.

3 faz çıkış gerilimini görmek için simgeye dokunun.

3 faz çıkış akımını görmek için simgeye dokunun.

• V Bypass

3 faz bypass gerilimini görmek için simgeye dokunun.

Dalgayı yaklaştırmak için simgeye dokunun.

Zoom Out

Dalgayı uzaklaştırmak için simgeye dokunun.

5. Çalıştırma

5.1 KGK'yı Devreye Alma

5.1.1 Normal Modda Çalıştırma

KGK, kurulumu bitince, devreye alma mühendisi tarafından devreye alınmalıdır. Aşağıdaki adımlar izlenmelidir:

- 1. Tüm devre kesicilerin açık olduğundan emin olun.
- 2. Harici giriş devre kesicileri kapatın ve sistemin başlama süreci başlamış olur. Sistemin çift girişi varsa devre kesicilerin her ikisini de kapatın.
- 3. Kabinin ön yüzündeki LCD'nin ışığı yanar. Sistem, Şekil 4-4'de görülen ana sayfaya girer.
- 4. Ana ekrandaki enerji çubuğuna ve LCD göstergelere dikkat edin. Doğrultucunun göstergesi yanıp sönmeye başlayarak devreye girmekte olduğunu gösterir. LED göstergeler aşağıdaki Tablo 5.1'de listelenmiştir.

Gösterge	Durum	Gösterge	Durum
Rectifier	vesil venin sönme	Inverter (Evirici)	kanalı
(Doğrultucu)	yeşii yanıp sonne	mvener (Evinci)	карап
Battery (Akü)	kırmızı	Load (Yük)	kapalı
Bypass	kapalı	Status (Durum)	kırmızı

Tablo 5.1 Doğrultucu'nun devreye girmesi

5. 30 saniye sonra, doğrultucu göstergesi sabit yeşil olur ve bu doğrultucunun devrede olduğunu, bypass statik anahtarının kapandığını ve eviricinin devreye girmekte olduğunu gösterir. LED göstergeler aşağıdaki Tablo 5.2'de listelenmiştir.

Gösterge	Durum	Gösterge	Durum
Rectifier (Doğrultucu)	yeşil	Inverter (Evirici)	yeşil yanıp sönme
Battery (Akü)	kırmızı	Load (Yük)	yeşil
Bypass	yeşil	Status (Durum)	kırmızı

Tablo 5.2 Evirici'nin devreye girmesi

6. KGK, evirici normal olunca, bypass'dan eviriciye geçer. LED göstergeler aşağıdaki Tablo 5.3'de listelenmiştir.

Tablo 5	5.3 Y	<i>l</i> ükün	besl	lenmesi

Gösterge	Durum	Gösterge	Durum
Rectifier (Doğrultucu)	yeşil	Inverter (Evirici)	yeşil
Battery (Akü)	kırmızı	Load (Yük)	yeşil
Bypass	kapalı	Status (Durum)	kırmızı

 KGK, Normal Moddadır. Akü devre kesicilerini kapatın ve KGK aküleri şarj etmeye LED göstergeler aşağıdaki Tablo 5.4'de listelenmiştir. Tablo 5.4 Normal mod

Gösterge	Durum	Gösterge	Durum	
Rectifier	vacil	Inventor (Evinici)	vasil	
(Doğrultucu)	yeşii	Inverter (Evinci)	yeşii	
Battery (Akü)	yeşil	Load (Yük)	yeşil	
Bypass	kapalı	Status (Durum)	yeşil	

8. Yükün çıkış devre kesicisini kapayın ve böylece KGK devreye alınmış olur.

```
🔲 Not
```

- Sistem devreye girdiği zaman, kayıtlı ayarlar yüklenecektir.
- Kullanıcılar, menü Log'una bakarak, devreye alma sürecindeki tüm olayları izleyebilirler.
- Kullanıcılar, güç modülü bilgilerini, ön tarafındaki düğmelerle görebilirler.

5.1.2 Aküden Çalıştırma

Aküden çalıştırma soğuk başlatma anlamına gelir. 10-yuvalık bir KGKyı örnek alırsak, devreye alma adımları şöyledir:

- 1. Akülerin doğru bağlanmış olduklarını doğrulayın: harici akü devre kesicilerini kapatın.
- 2. Aküden soğuk başlatma için kırmızı düğmeye basın (Bak. Şekil 5-1). Sistem akülerden besleniyor olacaktır. 20-yuvalık KGK'da, 2 adet aküden soğuk başlatma düğmesi bulunur. Her düğme, ancak kendi kabininin güç modüllerini başlatabilir. (Bak. Şekil 5-2).

Şekil 5-1 10-yuvalık kabin için aküden soğuk başlatma düğmesi konumu

Şekil 5-2 20-yuvalık kabin için aküden soğuk başlatma düğmeleri konumu

- 3. Ardından, sistem 5.1.1 bölümdeki 3 adımı izleyerek devreye girer ve sistem 30 saniye içinde akü moduna geçer.
- 4. Yükü beslemek için, harici çıkış güç kaynağını kapatın ve sistem akü modunda çalışıyor olur.

5.2 Çalıştırma Modları arasında Geçiş Yapma Yöntemi

5.2.1 KGK'yı Normal Moddan Akü Moduna Geçirme

KGK, şebeke gerilimi kesildiği veya önceden tanımlanmış sınırın altına düştüğü anda Akü moduna geçer.

5.2.2 KGK'yı Normal Moddan Baypas Moduna Geçirme

KGK'yı Normal moddan Bypass moduna geçirmenin iki yolu vardır:

- (a) Operate (Çalıştırma) menüsüne girin, "transfer to bypass" simgesine dokunun ve sistem bypass moda geçer;
- (b) Operatör kontrol panelindeki BYP düğmesine basıp iki saniyeden daha uzun bir süre tutarsanız, sistem bypass moda geçer. Bu işlevin, ön kapağın arkasındaki anahtarla etkinleştirilmiş olması gereklidir. Bak. Şekil 5-3.

Bypass moduna geçmeden önce, bypass'ın normal çalıştığından emin olun. Arızaya neden olabilir.

5.2.3 KGK'yı Baypas Modundan Normal Moda Geçirme

KGK'yı Bypass moddan Normal moda geçirmenin iki yolu vardır: (a) Operate menüsüne girin, eviriciye aktarma simgesine dokunun ve sistem bypass moduna geçer (b) Operatör kontrol panelindeki INV düğmesine basıp iki saniyeden daha uzun bir süre tutarsanız sistem Normal moda geçer.

🔲 Not

Normal olarak, sistem Normal moda otomatik olarak geçer. Bu işlev, bypass frekans sınırı aşıldıysa ve sistem Normal moda manuel olarak geçmek zorundaysa kullanılır.

5.2.4 KGK'yı Normal Moddan Bakım Baypas Moduna Geçirme

Aşağıdaki işlemler yükü KGK çevirici çıkışından bakım bypass kaynağına aktarır. Bu işlem, (6 ve 10 yuvalık kabinlerde) bypass modülüne, (20-yuvalık kabinlerde ise) izleme statik bypass birimine bakım yapmak için kullanılır.

- 1. 5.2.2 bölümünü izleyerek KGK'yı Bypass moduna geçirin.
- 2. Akü kesicisini açın ve bakım bypass'ını kapayın, ve yük, bakım bypassı ve statik bypass'dan beslenir.
- 3. (6 ve 10 yuvalık kabinlerde) bypass modülünü dışarı çekin, (20-yuvalık kabinlerde ise) izleme statik bypass birimini sökün. Böylece, yük bakım bypass'ından beslenecektir.

Bu işlemi yapmadan önce, LCD ekrandaki mesajları okuyup, bypass beslemesinin düzenli ve eviricinin bypass ile senkron olduğundan emin olun. Aksi takdirde, yükün beslenmesinde kısa bir kesinti riski olabilir.

Güç modülüne bakım yapmak istiyorsanız, kapağı açmadan önce, DC bara kondansatörünün tamamiyle boşalmış olmasını sağlamak için 10 dakika bekleyin.

5.2.5 KGK'yı Bakım Baypas Modundan Normal Moda Geçirme

Aşağıdaki işlemler, yükü Bakım Bypass modundan evirici çıkışına aktarır.

- 1. Bypass, LCD dokunmatik ekranının açılmasından 30 saniye sonra açılır; bypass göstergesi yeşil olur ve yük bakım ve statik bypasslardan beslenir.
- 2. Manuel bypass anahtarını kapatın ve yük bypass'dan beslenir. Doğrultucu ve ardından evirici açılır.
- 3. 60 saniye sonra, sistem Normal moda geçer.

5.3 Akü İşlemleri

Aküler uzun süredir kullanılmamışlarsa, durumlarının test edilmeleri gerekir. İki yöntem sunulmuştur:

1. Manuel Deşarj testi. Şekil 5-4'de görüldüğü gibi Operate menüsüne girin ve

"Battery Maintenance" simgesine dokunun. Sistem deşarj için Akü moduna girer. Akülerde %20 kapasiteye indiği veya gerilim düştüğünde sistem

deşarj işlemini durduracaktır. Kullanıcılar, deşarj işlemini "Stop Test" simgesine dokunarak da durdurabilirler.

Şekil 5-4 Akü bakımı

2. Otomatik deşarj. Bu ayar etkin ise, sistem akülerin bakımını otomatik olarak da yapabilir. Ayar yöntemi aşağıdaki işlemlerden oluşur.

(a) Otomatik akü deşarjını etkinleştirme. Setting (Ayarlar) menüsünün "CONFIGURE" (Yapılandırma) sayfasına girin, "Battery Auto Discharge"ı tıklayın ve onaylayın (Bu işlem fabrika tarafından yapılmalıdır).

(b) Akü otomatik deşarj süresini ayarlama. Setting (Ayarlar) menüsünün "BATTERY" (Akü) sayfasına girin (Bak. Şekil 5-5). "Auto Maintenance Discharge Period" öğesinde süreyi ayarlayın ve onaylayın.

		Ŷ	
Battery Number	<u> </u>	DATE & TIME	
Battery Capacity	AH		
Float Charge Voltage / Cell	v	LANGUAGE	
Boost Charge Voltage / Cell	V	сомм.	
EOD Voltage / Cell, @ 0.6C Current	V		
EOD Voltage / Cell, @ 0.15C Current	V	USER	
Charge Current Percent Limit	%	BATTERY	
Battery Temperature Compensate	mV/°C		
Boost Charge Time Limit	Hour	SERVICE	
Auto Boost Period	Hour		
Auto Maintenance Discharge Period 6480	Hour	RATE	
Please Confirm Settings 🗸 🗙 CONFIGURE			
Home Cabinet Module Setting Log	Oper	rate Scope	

Şekil 5-5 Akü otomatik deşarj için süre ayarı

Uyarı Otomatik bakım deşarjı için yük %20 ile %100 arasında olmalıdır. Aksi takdirde, sistem süreci otomatik olarak başlatamayacaktır.

5.4 EPO

EPO düğmesi, operatör kontrol ve ekran panelindedir ve yanlışlıkla kullanımı önlemek için kapak ile korunmuştur (Bak. Şekil 5-6). Bu düğme, KGK'yı acil durumlarda (yangın, su baskını vb.) kapatmak için tasarlanmıştır. EPO düğmesine basıldığı zaman, sistem doğrultucuyu ve eviriciyi kapatacak, ve yükü beslemeyi (evirici ve bypass dahil) derhâl durduracaktır; ve akülerin şarj ve deşarjı da duracaktır. Şebeke varsa, KGK kontrol devresi aktif olacaktır; ancak, çıkış kapanacaktır. Kullanıcılar, KGK'yı tamamen izole etmek için, şebekenin KGK'ya bağlantısını kesmelidirler. Kullanıcılar, KGK'yı güce takarak tekrar başlatabilirler.

Uyarı EPO tetiklendiği zaman, yük KGK tarafından beslenmez olur. EPO işlevini dikkatli kullanın.

Fig .5-6 EPO Düğmesi

5.5 Paralel Çalıştırma Sisteminin Kurulması

6-yuvalık ve 10-yuvalık sistemlerde, 3 KGK kabini paralel olarak bağlanabilir ve bu toplam 900KVA'lık kapasite genişlemesi sağlar. Ancak, 20-yuvalık sistemlerde paralel bağlantı şimdilik desteklenmemektedir.

İki KGK kabini Şekil 5-6'da gösterildiği gibi bağlanır.

Şekil 5-6 Paralel bağlantı şeması

Adı PS1203-TF4 olan paralel bağlantı kartı, KGK kabininin arkasındadır. Şekil 5-7'de gösterilmektedir.

Şekil 5-7 Paralel bağlantı kartının konumu

Paralel çalıştırma kontrol kabloları tüm tek cihazlarla kapalı bir devre oluşturacak şekilde, Şekil 5-8'de görüldüğü gibi bağlanmalıdır.

Şekil 5- Paralel bağlantı

Paralel çalıştırma hakkında daha fazla ayrıntı için, lütfen "Modüler KGK için Paralel Çalıştırma Talimatları"na başvurun.

6. Bakım

Bu bölüm, güç modülü ve izleme bypass modülü bakım talimatları ile toz filtresinin değiştirilme yöntemi de dahil olmak üzere, KGK bakımını tanıtır.

6.1 Önlemler

Güç modülü ve izleme bypass modülüne yalnızca bakım mühendisleri bakım yapabilirler.

- 1. Güç modülü, kabinin yüksek ağırlık merkezinden kaynaklanabilecek olası devrilmeleri önlemek için yukarıdan aşağıya doğru sökülmelidir.
- Güç ve bypass modüllerine bakım yapmadan önce, güvenliği sağlamak amacıyla, çalışan parçalar ve toprak arasındaki gerilimi ölçmek ve tehlikeli düzeyin altında olduğundan emin olmak için bir mültimetre kullanın. DC gerilim 60Vdc'den, ve AC maksimum gerilim 42.4Vac'den düşük olmalıdır.
- 3. Bypass modülü çalışırken bakım yapılması önerilmemektedir; bypass modülü, sadece KGK Manuel Bypass Modunda iken veya KGK tamamen kapalı ise sökülebilir.
- 4. Güç modülünün, veya kabinden çıkarıldıktan sonra bypassın kapağını açmadan 10 dakika bekleyin.

6.2 Güç Modülü Bakım Talimatları

Tamir edilmesi gereken güç modülünü dışarı çıkarmadan önce KGK'nın Normal Modda ve bypass'ın normal çalıştığından emin olun.

- 1. Kalan güç modülünün aşırı yük taşımak zorunda kalmayacağından emin olun.
- 2. Modülün gücünü kesin. 1)Etkinleştirme. LCD panel -> Operate Menüsü
 -> Modül "OFF" düğmesini etkinleştirin; 2) "OFF" düğmesine 3 saniye

-> Modül "OFF" düğmesini etkinleştirin; 2) "OFF" düğmesine 3 saniye süreyle basın, güç modülü sistemden ayrılmış olur.

- 3. Güç modülünün ön tarafında, iki kenarda olan montaj vidalarını sökün. (Bak. Şekil 3-10) ve modülü iki kişiyle dışarı çekin.
- 4. Tamiri gerçekleştirmek için kapağı açmadan önce 10 dakika bekleyin.
- 5. Tamirat bitince, 3.3.2 bölümündeki talimatları izleyerek güç modülünü kabinin içine itin ve güç modülü sisteme otomatik olarak dahil olacaktır.

6.3 Bakım Talimatları

6.3.1 6 ve 10 yuvalık Kabinler Baypas Modülü Bakımı

Tamir edilmesi gereken bypass modülünü dışarı çıkarmadan önce KGK'nın Normal Modda ve bypass'ın normal çalıştığından emin olun. Bypass modülüne bakım yapmak için aşağıdaki adımları izleyin.

- 1. LCD kontrol panelinden, sistemi bypass moduna geçirin. (Bölüm 4.5.5'e bakın).
- 2. Akü anahtarını açın, manuel bypass anahtarını kapatın; KGK gücü manuel bypass'dan beslenecektir.
- 3. Bypass modülünü dışarı çekin ve yük manuel bypass'dan beslenecektir.
- 4. Bypass modülünün önünde iki kenarda olan montaj vidalarını sökün (Bak. Şekil 3-10) ve ön sinyal kablosu bypass modülüne bağlanır.
- 5. Bypass modülünü dışarı çekin ve LCD dokunmatik ekran kapanır.
- 6. Tamiri gerçekleştirmek için kapağı açmadan önce 10 dakika bekleyin.

- 7. Tamirat bitince, 3.3.2 bölümündeki talimatları izleyerek bypass modülünü kabinin içine itin ve dokunmatik LED ekran açılır.
- 8. Bypass, dokunmatik LED ekran açıldıktan 30 saniye sonra devreye girer ve bypass göstergesi yeşil renge dönüşür ve yük manuel bypass ve statik bypass'dan beslenir.
- 9. Manuel bypass anahtarını kapatın ve yük bypass'dan beslenir Sonra doğrultucu ardından da evirici açılır.
- 10. 60 saniye sonra sistem Normal moda geçer.

6.3.2 20 yuvalık Kabin Statik Baypas Ünitesi Bakımı

- 1. LCD kontrol panelinden, sistemi bypass moduna geçirin. (Bölüm 4.5.5'e bakın);
- 2. Akü anahtarını açın, manuel bypass anahtarını kapatın; KGK gücü manuel bypass'dan beslenecektir;
- 3. Şebeke Girişi, Giriş Bypass ve KGK çıkış anahtarlarını açın;
- 4. Inner Control Neutral (Dahili Kontrol Nötr) kablo bağlantısını Şekil 6-1'de gösterildiği gibi kesin;
- 5. Fan paneline sabitlenmiş vidaları sökün ve fan panelini sökün;
- 6. (DB9 tip) iki takım kontrol sinyal kablolarını çıkartın;
- 7. Fan birimlerini çıkartın ve fan kablolarını sökün;
- 8. Bakır baralarla statik bypass birimini bağlayan vidaları sökün;
- 9. Statik bypass birimini bakımı mümkün kılacak kadar çekin (statik bypass birimi çıkartılmadan da tamir edilebilir);
- 10. Bakım işlemi bitince, statik bypass'ı içeri itin;
- 11. Statik bypass ve kabinin arkasındaki iç bakır baraları sabitleyin;
- 12. Fan kablolarını bağlayın ve fan birimlerini çalışır vaziyete getirin;
- 13. (DB9 tip) iki takım kontrol sinyal kablolarını bağlayın;
- 14. Fan panelini takın ve vidalayın;
- 15. KGK bypass giriş anahtarını, çıkış anahtarını ve şebeke giriş anahtarlarını bu sırayla kapatın;
- 16. Inner Control Neutral (Dahili Kontrol Nötr) kablo bağlantısını Şekil 6-1'de gösterildiği gibi yapın.
- 17. Gücü açtıktan 2 dakika sonra, LCD panelde, yükün statik ve manuel bypass tarafından beslendiğini gösteren enerji akışı şeması görülecektir.
- 18. Manuel bypass anahtarını açın, Evirici devreye otomatik olarak girecektir. 60 saniye sonra, KGK, bakımın başarılı olduğu göstergesi olarak Normal modda çalışacaktır.

Not: Statik bypass birimini tamir için götürmek gerekiyorsa, forklift kullanımı tavsiye edilir. (Statik bypass ünitesinin ağırlığı 55kg olabilir).

6.3.3 Hava çekici fanların Bakımı

- 1. Fan birimi panelini çıkartın
- 2. Fan düğmesine basarak, fanları devre dışı bırakın
- 3. Fanları değiştirin
- 4. Düğmeye basarak fanları tekrar devreye alın
- 5. Fan panelini monte edin

6.3.4 Akü Bakımı

Bakımsız kurşun asitli akülerde, akü bakımını gerektiği gibi yapmak, akülerin ömürleri uzatabilir. Akü ömrü genelde aşağıdaki faktörlerle belirlenir:

1. Kurulum. Aküler, iyi bir havalandırmanın bulunduğu kuru ve serin bir yere yerleştirilmelidir. Direkt güneş ışığından sakının ve herhangi bir ısı kaynağından uzak tutun. Bağlarken, aynı özelliklere sahip olan aküleri doğru bir şekilde bağladığınızdan
emin olun.

2. Isı. En uygun depolama ısısı 20°C ilá 25°C'dir.

3. Şarj/deşarj akımı. Kurşun asitli aküler için en iyi şarj akımı 0.1C'dir. Aküler için maksimum şarj akımı 0.2C'ye kadar çıkabilir. Deşarj akımı 0.05C-3C olmalıdır.

 4. Şarj voltajı. Aküler, çoğunlukla standby durumundadırlar. Şebeke normal olduğu zaman, sistem aküleri boost modda (maksimumu sınırlı sabit gerilimde) şarj edecektir.
 5. Deşarj derinliği. Akü ömrünü çok kısaltan derin deşarjdan sakının. KGK, uzun bir süre hafif bir yükle veya yüksüz olarak akü modunda çalışırsa, aküler derin deşarj olacaklardır.

6. Periyodik olarak kontrol edin. Akülerde herhangi bir anormallik olup olmadığını, akülerin her birinin geriliminin dengede olduğunu gözlemleyin. Aküleri periyodik olarak deşarj edin.

6.3.5 Dahili Kontrol Nötr Kablosunu Sökme

Dahili kontrol Nötr kablosu, Nötr Kablo Anahtarını kapatarak sökülebilir.

Bu işlemle, Yardımcı (aux) güç beslemesi şebekeden ayrılacaktır.

6-yuvalık kabin ve 10-yuvalık kabin için dahili kontrol nötr kablosunu sökmeye gerek yoktur.

Dahili Kontrol Nötr Kablosu, manuel bypassın sağındadır ve Şekil 6-1'de görüldüğü gibi koruyucu bir levha ile korunmaktadır.

Şekil 6-1 Dahili Kontrol Nötr Kablosunun konumu

6.4 Akü Ayarları

Aküler, ilk devreye alımda veya akülerde herhangi bir değişiklik yapıldığında ayarlanmalıdır.

Akülerin yapılandırılması LCD kontrol paneli ile (Şekil 6-2) veya izleme yazılımıyla (Şekil 6-3) gerçekleştirilebilir.

Battery Type		DATE & TIME
Battery Number		
Battery Capacity	ÂH	LANGUAGE
Float Charge Voltage / Cell	ÎV	
Boost Charge Voltage / Cell	V I	сомм.
EOD Voltage / Cell, @ 0.6C Current	V	USER
EOD Voltage / Cell, @ 0.15C Current	V I	
Charge Current Percent Limit	%	BATTERY
Battery Temperature Compensate	mV/°C	,
Boost Charge Time Limit	Hour	SERVICE
Auto Boost Period	Hour	PATE
Auto Maintenance Discharge Period	Hour	RATE
Please Confirm Setti	ngs 🗸	CONFIGURE
Home Cabinet	Log Open	rate Scope

Şekil 6-2 LCD kontrol paneli ile yapılandırma

MainIpData	System Setting Battery Setting Customization	WarningSet DryContactSe	et l	
OutputData		manuscratificated marketeresson		
BatteryData	Battery Type	VRLA	VRLA	
CabStatus				
UnitStatus	Battery Number	32	40 💌	
HisLogDown	Battery AH	100		
SCodeDown RateSetting	Float Charge Voltage/Cell(V)	2.28	2.25	
ServSetting	Boost Charge Voltage/Cell(V)	2.30	2.35	
DetectAdjust	EOD Voltage/Cell. @ 0.6C Current(V)	1.65	1.65	
FwProgram	EOD Voltage/Cell @ 0.15C Current(V)	1.75	1.75	
Help]			×
About			Set	
UPS type RMX000	00kVA) - Protocol MODBUS_ASCI	Address		573
Baud rate 9600	Port No. COMS	Disconnect		100
UPS Connected	2014-10-30 13:37:22			

Şekil 6-3 İzleyici yazılımla yapılandırma

6.4.1 Akü Tipi Ayarı

Akü tipi, sadece izleme yazılımı ile ayarlanabilir. Sistem, şimdiki halde kurşun asit ve Lityum demir fosfat aküleri (LFPB) desteklemektedir.

6.4.2 Akü Sayısı Ayarı

1) Kurşun asit akü sayısı ayarı

Bir akünün voltajı 12V'dur ve her aküde 2V'luk 6 göz bulunur. Ayarlamak için, Şekil 6-2'de görüldüğü gibi, akü sayısı 40 ise, 40 blok akü, ve hem pozitif hem negatif olarak 20'şer blok akü var demektir.

2V'luk akü gözü (genelde yüksek kapasiteli) kullanıldığında, akü sayısı akü bloğu ile aynı olmalıdır. Kullanılan akü gözü 240 (6*40) ve 120'şer pozitif ve negatif göz olmalıdır.

Akü sayısı ayarı 36 ile 44 arasındadır.

2) LFPB akü sayısı ayarı

Her LFPB akünün gözü 3,2V'dur ve her akü bloğu tek bir hücreden oluşur. Eğer 40 Kurşun-Asit akü kullanılıyorsa, toplam LFPB akü sayısı 150 olmalıdır. Pozitif ve negatif 75'şer hücre vardır.

LFPB akü ayarlama sayısı 140 ile 180 arasındadır. LFPB akü için EOD gerilimi 360V

ve en yüksek voltaj 620V olabilir.

6.4.3 Akü Kapasitesi Ayarı

Akü Kapasitesi Ayarı, akü bloğunun kapasite değerini belirler. Örneğin, eğer sistem 40 adet 12V/100AH akü kullanıyorsa, Akü Kapasitesi Ayarı 100 Ah olmalıdır. Eğer 240 adet 2V/1000AH akü gözü kullanılıyorsa, Akü Kapasitesi Ayarı 1000 Ah olmalıdır.

Eğer paralel olarak birden fazla akü dizini varsa, akü sayısı ayar değeri dizin adediyle carpılmalıdır. Örneğin, 40 adet 12V/100AH'den oluşan iki dizin varsa, akü kapasite ayarı 200AH olmalıdır.

Sistem, akım limitlerini ayarlanmış olan akü kapasite değerlerine göre belirler. Kurşun-Asit akü için akım limiti 0.2C, LFPB için 0,3C'dir. Örneğin, 20-yuvalık KGK, 40 blok 12V/500AH akü ile yapılandırılmışa, bu toplam 192A maksimum şarj akımı sağlar. Akım limitleri (0.2C) nedeniyle, maksimum şarj akımı 100A (0,.2*500A) olacaktır.

6.4.4 FLOAT ve Boost Şarj Ayarları

Sistem, boost şarjda, aküleri sabit bir akımla şarj eder. Sistem, ardından FLOAT şarja geçecektir.

Kurşun-Asit aküler için varsayılan FLOAT şarjı göz başına 2,25V, boost şarj voltajı 2.35V'dur.

LFPB için varsayılan FLOAT ve boost şarj voltajı 3,45V'dur.

6.4.5 EOD Voltaj Ayarı

Deşarj akımı 0,6C'den fazla ise, EOD voltajı 0.6C'dir;

Deşarj akımı 0,15C'den az ise, EOD voltajı 0,15C'dir. EOD voltaj Akımı 0,15C ve 0,6C'den yukarı çıktıkça EOD voltajı lineer olarak düşer (Bak. Şekil 6-4).

Şekil 6-4 EOD voltajı

Kursun-Asit aküler icin, akü gözü voltajının 0.6C'de 1.65V/göz'e, 0.15C'de ise 1,75V'a ayarlanması önerilir.

LFPB aküler için, akü gözü voltajının, hem 0,5C ve hem 0,15C'de 2,7V/göz'e ayarlanması önerilir.

6.4.6 Şarj Akımı Yüzde Limiti

Bu ayar, şarj gücünü sınırlamak içindir ve maksimum akım limiti, nominal gücün %20'si olabilir. Bir güç modülünün akım limitine göre (yüzde olarak) verebileceği maksimum akım Tablo 5.5'de gösterilmiştir.

Gerçek şarj akımı akü kapasitesi ile de sınırlıdır. Bölüm 6.4.3'e bakın.

A_{1}	Maks. Şarj akımı (A)
Akim minu (%)	20kW güç modülü
1	0.5
2	0.9
3	1.4
4	1.9
5	2.3
6	2.8
7	3.3
8	3.8
9	4.2
10	4.7
11	5.2
12	5.6
13	6.1
14	6.6
15	7.0
16	7.5
17	8.0
18	8.4
19	8.9
20	9.4

Tablo 5.5 Her güç modülü için Akım limiti

6.4.7 Akü Isı Denkleme

Bu, ısı denkleme katsayısı ayarıdır. 25°C temel alınmıştır ve ısı bunun üstüne çıkarsa, deşarj voltajı düşer. Isı bundan daha yüksekse, deşarj voltajı yükselir.

6.4.8 Boost Şarj Süre Limiti

Bu, Boost Şarj süresini ayarlamak içindir. Ayarlandığı zaman dolunca sistem FLOAT şarja geçer. Ayar aralığı 1-48 saattir.

6.4.9 Otomatik Boost Zamanı

Bu, otomatik boost zamanını ayarlamak için kullanılır. Ayarlanmış zaman geldiğinde, sistem aküleri şarj eder. Akülere her üç ayda bir boost şarj yapılması önerilir. Bu durumda ayarın 4320 saat olarak yapılması gerekir.

6.4.10 Otomatik Bakım Deşarj Zamanı

Otomatik bakım Deşarj zamanı gelince, sistem aküleri deşarj edecektir. Bu işlevi etkinleştirmek için, Şekil 6-5'de görüldüğü gibi, izleme yazılımında AutoMaint (RateSetting->SysCodeSetting1) kutusunu işaretlemek gerekir.

		*	CHS		ENGLISH		
Home 🗠 BypassData	RateSettings				Syscode Setting1		
MainIpData	InputVolt		220		📕 Derate(0)	📕 FreqSelfAdpi(6)	📕 InhibitAdj(C)
BatteryData	OutputVolt		220		📕 33/31/(L)	LogoType(7)	📕 DoBusLevel/D)
CabStatus UnitStatus	OutputFreq		50		AutoBoost(2)	📕 RecCtrWay(3)	📕 PFEzterm(E)
HisLogDown					✓ AutoMaint(3)	PFF1ag(9)	E Reserved(F)
RateSetting					RmOrHi(4) NotTxTL mt(5)		Set by bit
ServSetting DetectAdjust					[Notiviend()		Ser by bit
ControlCmd EwProgram						Set]
UPS type RMX(20-60	00kVA) 🗸 P	rotocol	MODBUS	_ASCII	 Address 1 		io),
Baud rate Auto	– P	ort No.			Conr	lect	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Şekil 6-5 Otomatik bakım Deşarj zamanını etkinleştirmek

Otomatik bakım Deşarjının EOD voltajı, normal EOD voltajının 1,05 katıdır.

6.4.11 Aşırı Akü ve Ortam Sıcaklığı Uyarıları

Bu işlev izleme yazılımı ile ayarlanır. Sistem, akülerin ve ortamın ısı bilgilerini okur ve aşırı ısı uyarısı verir.

Ayarlama aralığı 25-70 °C'dir.

Isı sensörü, Kuru Kontak yoluyla yerleştirilmelidir.

6.5 Toz Filtresinin Değiştirilmesi (opsiyonel)

Şekil 6-1'de görüldüğü gibi, KGK'nın ön kapağının arkasında 3~4 adet toz filtresi vardır ve her filtre, her iki yanında bulunan köşebentlerle sabitlenir. Filtreleri değiştirmenin yöntemi aşağıdaki gibidir:

- 1. Ön kapağı açın ve arkasındaki filtreleri bulun.
- 2. Köşebendi çıkartın.
- 3. Değiştirilecek toz filtresini çıkartıp yerine temizini takın.
- 4. Köşebendi tekrar monte edin.

Şekil 6-1 Ön kapağın arkasındaki toz filtresi

7. Ürünün Teknik Özellikleri

Bu, bölüm, çevresel, mekanik ve elektriksel özellikleri de dahil olmak üzere ürünün teknik özelliklerini sunar.

7.1 Uyulan Standartlar

KGK, aşağıdaki Avrupa ve uluslararası standartlara uygun olacak şekilde tasarlanmıştır:

1			
Madde	Normatif referans		
Operatörün erişim alanlarında kullanılan	EN50001 1 1/JEC(2040 1 1/45 (2040 1 1		
KGK'lar için güvenlik şartları	EN50091-1-1/1EC62040-1-1/AS 62040-1-1		
KGK'lar için Elektromanyetik uyumluluk	EN50001 2/IEC62040 2/AS 62040 2 (C2)		
şartları (EMC)	EN30091-2/IEC02040-2/AS 02040-2 (C3)		
KGK'ların performans ve test şartlarını	EN50091-3/IEC62040-3/AS 62040-3 (VFI SS		
belirleme yöntemi	111)		

Tablo 7.1 Avrupa ve uluslararası standartlara uyumluluk

Not

Yukarıda söz edilen ürün standartları, IEC ve EN eşdeğer güvenlik standartları (IEC/EN/AS60950), elektromanyetik yayım ve bağışıklık (IEC/EN/ AS61000 serisi) ve yapı (IEC/EN/AS60146 serisi ve 60950) ile ilgili uyumlu ibareleri içerir.

7.3 Ortam Özellikleri

Tablo 7.2 Ortam Özellikleri

Öğa	Dinim	Şartlar		
Oge	BILIW	120/20	200/20	400/20
1 Metrede Akustik	dD	65dB @ %100	yükte, 62dB @ %45	<704P
gürültü seviyesi	uD	yükte		≤/0ub
Calistirma İrtifası		≤1000, 1000m'd	en 2000m'ye, yük he	er 100m'de %1
Çanşurma irtilasi	m	düşer		
Bağıl Nem	%	0-95, yoğuşmasız		
Calisma Isisi	90	-25/+40 (sadece)	KGK için), 20°C'nin ü	stünde her 10°C
Çanşına 18181	Ļ	artış için Akü ömrü yarılanır		
KGK Depolama Isısı	°C	-40-70		

7.4 Mekanik Özellikler

Tablo 7.3 Kabinin Mekanik Özellikleri

Öğe	Birim	120/20	200/20	400/20
Mekanik Boyutlar (G*D*Y)	mm	600*1100*1600	600*1100*2000	2000*1100*2000
Ağırlık	kg	170	220	620
Renk	Yok		Siyah	
Koruma Düzeyi, IEC60529)	Yok		IP20	

Öğe	Birim	20kW
Mekanik Boyutlar (G*D*Y)	mm	460*790*134
Ağırlık	kg	34

Cüa Madülünün Malau ila Özellülderi

7.5 Elektriksel Özellikler

7.5.1 Elektriksel Özellikler (Doğrultucu Girişi)

Tablo 7.5	Doğrultucu AC	C Şebeke	girişi

Öğe	Birim	Parametre
Şebeke Sistemi	\	3 Faz + Nötr + Toprak
Nominal AC Giriş Voltajı	Vac	380/400/415 (üç faz ve nötr'ün bypass girişi ile paylaşımı)
Nominal Frekans	Vac	50/60Hz
Giriş voltajı aralığı	Vac	304~478Vac (Hattan-Hata), tam yükte 228V~304Vac (Hattan-Hata), min. faz gerilimine bağlı olarak yük lineer olarak azalır
Giriş Frekans aralığı	Hz	35~70
Giriş Güç Faktörü	PF	>0.99
THDI	%THDI	<%3 (Tam Lineer Yükte)

Öğeler	Birim	Parametreler	
Akü bara gerilimi	Vdc	Nominal: ±240V	
Kurşun-Asit göz adedi	Nominal	40=[1 akü(12V)] ,240=[1 akü(2V)]	
FLOAT şarj gerilimi	V/göz (VRLA)	2.25V/göz(2.2V/göz~2.35V/göz'den seçilebilir) Sabit akım ve sabit gerilim sari modu	
Isı dengeleme	mV/ °C /cl	-3.0 (0~-5.0 seçilebilir)	
Dalgalı voltaj	%	≤1	
Dalgalı akım	%	≤5	
Eşitlenmiş		2.4V/göz(2.30V/göz~2.45V/göz'den seçilebilir)	
şarj voltajı	VKLA	Sabit akım ve sabit gerilim şarj modu	
Deşarj sonu gerilimi	V/göz (VRLA)	 1.65V/göz (1.60V/göz~1.750V/göz'den seçilebilir) @0.6C deşarj akımı 1.75V/göz (1.65V/göz~1.8V/göz'den seçilebilir) @0.15C deşarj akımı (EOD voltajı, deşarj akımına göre belirlenmiş aralık dahilinde lineer olarak değişir.) 	
Akü Şarjı	V/göz	2.4V/göz (2.3V/göz~2.45V/göz'den seçilebilir) Sabit akım ve sabit gerilim şarj modu	
Akü Şarj Gücü	kW	%10* KGK kapasitesi (%0~%20 * KGK kapasitesinden	
Maks. Akım	A 11	seçilebilir)	

7.5.2 Elektriksel Özellikler (Ara DC Bağlantısı)

Not: Varsayılan akü sayısı 40'dır. Kullanılan akü sayısı 36 ile 44 arasındaysa, bu sayı ile ayarlanmış sayının aynı olduğundan emin olun, aksi takdirde aküler zarar görebilir.

7.5.3 Elektriksel Özellikler (Evirici Çıkışı)

Tablo 7.7 Evirici Çıkışı (Kritik yüke)

ä.	D!	
Oğe	Birim	120/20,200/20,400/20
Nominal kapasite	kVA	20~400
Nominal AC gerilimi	Vac	380/400/415 (Hattan Hata)
Nominal Frekans	Hz	50/60
Frekans Regülasyonu	Hz	50/60Hz±%0.1
Voltaj duyarlılığı	%	±1.5(%0~100 lineer yükte)
		110, 60 dak.;
aşırı yük	١	%125, 10 dak.;
	١	%150, 1 dak.;
		>%150, 200 ms
Senkron Aralığı	Hz	Ayarlanabilir, ± 0.5 Hz $\sim \pm 5$ Hz, varsayılan ± 3 Hz
Senkron Yetişme Hızı	Hz	Ayarlanabilir, 0.5Hz/san. ~ 3Hz/san., varsayılan 0.5Hz/san.
Çıkış Güç Faktörü	PF	1.0
Geçici Tepki	%	adım tipi yük için <%5 (%20 - %80 -%20)
Toparlanma Süresi		adım tipi yük için < 30 ms (%0 - %100 -%0)
Çıkış Voltajı		lineer yükte %0'dan %100'e <%1
THDu		IEC/EN62040-3'e göre tam lineer olmayan yükte <3%

7.5.4 Elektriksel Özellikler (Bypass Şebeke Girişi)

Tablo 7.8 Bypass Şebeke Girişi

Öğe	Birim	120/20	200/20	400/20
Nominal AC gerilimi	Vac	380/400/415 (üç faz – dört telli)		
Nominal AC Akımı	А	182	303	606
Aşırı yük	%	%1 %1 %1 %1 %1	10 Uzun süre çalıştır 10%~%125 5 dakika 25~%150 1 dakika i 50~%400% 1 saniye %400, 200ms'den az	ma için çin için z
Nötr kablosunun nominal akım değeri	А	1.7×In		
Nominal frekans	Hz	50/60		
(Bypass ve Evirici arasında) Geçiş Süresi	ms	Senkron aktarma: 0ms		
Bypass voltaj aralığı	%	Ayarlanabilir, varsayılan -%20~+%15 Yukarı limitli: +%10, +%15, +%20, +%25 Aşağı limitli: -%10, -%15, -%20, -%30, -%40		
Bypass frekans aralığı	%Hz	Ayarla	nabilir, ±1Hz, ±3Hz,	±5Hz
Senkron Aralık	Hz	Ayarlanabili	r ±0.5Hz~±5Hz, vars	ayılan ±3Hz

7.6 Verim

Tablo 7.9 Verim				
Sistem Verimi				
Normal modda (çift dönüşüm)	%	>95		
Akü modunda akü deşarj verimi (aküler 480Vdc nominal voltajda ve				
tam-nominal lineer yükte)	%	>95		

7.7 Ekran ve Arabirimler

Tablo 7.10 Ekran ve Arabirimler		
Ekran	LED + LCD +Renkli dokunmatik ekran	
Arabirimler	Standart:RS232, RS485, USB, Kuru Kontak Opsiyonel: SNMP, AS/400	

AGKK11744 07/2024

İTHALATÇI / İMALATÇI FİRMANIN

UNVANI : TESCOM ELEKTRONİK SANAYİ ve TİCARET A.Ş

İSTANBUL / GENEL MERKEZ / BÖLGE SATIŞ MÜDÜRLÜĞÜ

ADRESİ	: Dudullu Organize Sanayi Bölgesi 2.Cadde No:7 Zemin Kat Ümraniye / İSTANBUL
TEL	: +90 (216) 977 77 70 pbx
FAKS	: +90 (216) 527 28 18

İZMİR / FABRİKA

ADRESİ	: 10009 Sokak No:1, Ulukent Sanayi Sitesi 35660 Menemen – İZMİR
TEL	: +90 (232) 833 36 00 pbx
FAKS	: +90 (232) 833 37 87

İZMİR / BÖLGE SATIŞ MÜDÜRLÜĞÜ

 ADRESI
 : Mersinli, 2823/1. Sk. No:18/A, 35170 Konak / İZMİR

 TEL
 : +90 (232) 935 87 26

 FAKS
 : +90 (232) 966 87 26

ANKARA / BÖLGE SATIŞ MÜDÜRLÜĞÜ

ADRESİ : İvedik OSB Melih Gökçek Bulvarı 1122. Cad. Maxivedik İş Merkezi No:20/106 Yenimahalle / ANKARA TEL : +90 (312) 476 24 37

FAKS : +90 (312) 476 24 38

www.tescom-ups.com

info@tescom-ups.com / support@tescom-ups.com

<u>YETKİLİ SERVİSLER</u>

https://www.tescom-ups.com/tr/cozum-ortaklari